406 projects for "compiler python linux" with 2 filters applied:

  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    Superduper

    Superduper

    Superduper: Integrate AI models and machine learning workflows

    Superduper is a Python-based framework for building end-2-end AI-data workflows and applications on your own data, integrating with major databases. It supports the latest technologies and techniques, including LLMs, vector-search, RAG, and multimodality as well as classical AI and ML paradigms. Developers may leverage Superduper by building compositional and declarative objects that out-source the details of deployment, orchestration versioning, and more to the Superduper engine. This allows...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Learn AI Engineering

    Learn AI Engineering

    Learn AI and LLMs from scratch using free resources

    Learn AI Engineering is a learning path for AI engineering that consolidates high-quality, free resources across the full stack: math, Python foundations, machine learning, deep learning, LLMs, agents, tooling, and deployment. Rather than a loose bookmark list, it organizes topics into a progression so learners can start from fundamentals and move toward practical, production-oriented skills. It mixes courses, articles, code labs, and videos, emphasizing materials that teach both concepts...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    nanochat

    nanochat

    The best ChatGPT that $100 can buy

    nanochat is a from-scratch, end-to-end “mini ChatGPT” that shows the entire path from raw text to a chatty web app in one small, dependency-lean codebase. The repository stitches together every stage of the lifecycle: tokenizer training, pretraining a Transformer on a large web corpus, mid-training on dialogue and multiple-choice tasks, supervised fine-tuning, optional reinforcement learning for alignment, and finally efficient inference with caching. Its north star is approachability and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    verl

    verl

    Volcano Engine Reinforcement Learning for LLMs

    VERL is a reinforcement-learning–oriented toolkit designed to train and align modern AI systems, from language models to decision-making agents. It brings together supervised fine-tuning, preference modeling, and online RL into one coherent training stack so teams can move from raw data to aligned policies with minimal glue code. The library focuses on scalability and efficiency, offering distributed training loops, mixed precision, and replay/buffering utilities that keep accelerators busy....
    Downloads: 0 This Week
    Last Update:
    See Project
  • Simple, Secure Domain Registration Icon
    Simple, Secure Domain Registration

    Get your domain at wholesale price. Cloudflare offers simple, secure registration with no markups, plus free DNS, CDN, and SSL integration.

    Register or renew your domain and pay only what we pay. No markups, hidden fees, or surprise add-ons. Choose from over 400 TLDs (.com, .ai, .dev). Every domain is integrated with Cloudflare's industry-leading DNS, CDN, and free SSL to make your site faster and more secure. Simple, secure, at-cost domain registration.
    Sign up for free
  • 5
    OSS-Fuzz Gen

    OSS-Fuzz Gen

    LLM powered fuzzing via OSS-Fuzz

    OSS-Fuzz-Gen is a companion project that helps automatically create or improve fuzz targets for open-source codebases, aiming to increase coverage in OSS-Fuzz with minimal maintainer effort. It analyses a library’s APIs, examples, and tests to propose harnesses that exercise parsers, decoders, or protocol handlers—precisely the code where fuzzing pays off. The system integrates with modern LLM-assisted workflows to draft harness code and then iterates based on build errors or low coverage...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Style Aligned

    Style Aligned

    Official code for Style Aligned Image Generation via Shared Attention

    StyleAligned is a diffusion-model editing technique and codebase that preserves the visual “style” of an original image while applying new semantic edits driven by text. Instead of fully re-generating an image—and risking changes to lighting, texture, or rendering choices—the method aligns internal features across denoising steps so the target edit inherits the source style. This alignment acts like a constraint on the model’s evolution, steering composition, palette, and brushwork even as...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    BIG-bench

    BIG-bench

    Beyond the Imitation Game collaborative benchmark for measuring

    BIG-bench (Beyond the Imitation Game Benchmark) is a large, collaborative benchmark suite designed to probe the capabilities and limitations of large language models across hundreds of diverse tasks. Rather than focusing on a single metric or domain, it aggregates many hand-authored tasks that test reasoning, commonsense, math, linguistics, ethics, and creativity. Tasks are intentionally heterogeneous: some are multiple-choice with exact scoring, others are free-form generation judged by...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Gemma in PyTorch

    Gemma in PyTorch

    The official PyTorch implementation of Google's Gemma models

    gemma_pytorch provides the official PyTorch reference for running and fine-tuning Google’s Gemma family of open models. It includes model definitions, configuration files, and loading utilities for multiple parameter scales, enabling quick evaluation and downstream adaptation. The repository demonstrates text generation pipelines, tokenizer setup, quantization paths, and adapters for low-rank or parameter-efficient fine-tuning. Example notebooks walk through instruction tuning and evaluation...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    ArXiv MCP Server

    ArXiv MCP Server

    A Model Context Protocol server for searching and analyzing arXiv

    arxiv-mcp-server bridges AI assistants and the arXiv repository through a clean MCP interface, enabling search, metadata retrieval, and content access without bespoke scraping. With simple tools like “search” and “fetch,” an agent can find papers, pull abstracts, and download PDFs for downstream summarization or analysis. The project includes packaging and CI to publish to PyPI, plus tests and linting for reliability. Issue threads show feature requests such as extracting embedded LaTeX and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Build Securely on AWS with Proven Frameworks Icon
    Build Securely on AWS with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 10
    PPTAgent

    PPTAgent

    PPTAgent: Generating and Evaluating Presentations

    PPTAgent is a research system for generating and evaluating slide decks that goes beyond simple text-to-slides. It follows a two-stage, edit-based workflow: first it analyzes reference presentations to infer slide roles and structure, then it drafts an outline and iteratively performs editing actions to produce new slides. The project includes both the generation agent and an evaluation framework, PPTEval, to score content quality, design, and coherence. The repository highlights the EMNLP...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    MobileCLIP

    MobileCLIP

    Implementation of "MobileCLIP" CVPR 2024

    MobileCLIP is a family of efficient image-text embedding models designed for real-time, on-device retrieval and zero-shot classification. The repo provides training, inference, and evaluation code for MobileCLIP models trained on DataCompDR, and for newer MobileCLIP2 models trained on DFNDR. It includes an iOS demo app and Core ML artifacts to showcase practical, offline photo search and classification on iPhone-class hardware. Project notes highlight latency/accuracy trade-offs, with...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    4M

    4M

    4M: Massively Multimodal Masked Modeling

    4M is a training framework for “any-to-any” vision foundation models that uses tokenization and masking to scale across many modalities and tasks. The same model family can classify, segment, detect, caption, and even generate images, with a single interface for both discriminative and generative use. The repository releases code and models for multiple variants (e.g., 4M-7 and 4M-21), emphasizing transfer to unseen tasks and modalities. Training/inference configs and issues discuss things...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    MGIE

    MGIE

    Guiding Instruction-based Image Editing via Multimodal Large Language

    MGIE—Guiding Instruction-based Image Editing—demonstrates how a multimodal LLM can parse natural-language editing instructions and then drive image transformations accordingly. The project focuses on making edits explainable and controllable: the model interprets text guidance, reasons over image content, and outputs edits aligned with user intent. It’s positioned as an ICLR 2024 Spotlight work, with code and references that show how to connect language planning to concrete image operations....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    FastVLM

    FastVLM

    This repository contains the official implementation of FastVLM

    FastVLM is an efficiency-focused vision-language modeling stack that introduces FastViTHD, a hybrid vision encoder engineered to emit fewer visual tokens and slash encoding time, especially for high-resolution images. Instead of elaborate pruning stages, the design trades off resolution and token count through input scaling, simplifying the pipeline while maintaining strong accuracy. Reported results highlight dramatic speedups in time-to-first-token and competitive quality versus...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    ML Ferret

    ML Ferret

    Refer and Ground Anything Anywhere at Any Granularity

    Ferret is Apple’s end-to-end multimodal large language model designed specifically for flexible referring and grounding: it can understand references of any granularity (boxes, points, free-form regions) and then ground open-vocabulary descriptions back onto the image. The core idea is a hybrid region representation that mixes discrete coordinates with continuous visual features, so the model can fluidly handle “any-form” referring while maintaining precise spatial localization. The repo...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Petri

    Petri

    An alignment auditing agent capable of exploring alignment hypothesis

    Petri is an open-source alignment auditing agent that lets researchers rapidly test concrete safety hypotheses against target models using realistic, multi-turn scenarios. Instead of building bespoke evals, Petri automatically generates audit environments from seed “special instructions,” orchestrates an auditor model to probe a target model, and simulates tool use and rollbacks to surface risky behaviors. Each interaction transcript is then scored by a judge model using a consistent rubric...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    LLaMA Models

    LLaMA Models

    Utilities intended for use with Llama models

    This repository serves as the central hub for the Llama foundation model family, consolidating model cards, licenses and use policies, and utilities that support inference and fine-tuning across releases. It ties together other stack components (like safety tooling and developer SDKs) and provides canonical references for model variants and their intended usage. The project’s issues and releases reflect an actively used coordination point for the ecosystem, where guidance, utilities, and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Purple Llama

    Purple Llama

    Set of tools to assess and improve LLM security

    Purple Llama is an umbrella safety initiative that aggregates tools, benchmarks, and mitigations to help developers build responsibly with open generative AI. Its scope spans input and output safeguards, cybersecurity-focused evaluations, and reference shields that can be inserted at inference time. The project evolves as a hub for safety research artifacts like Llama Guard and Code Shield, along with dataset specs and how-to guides for integrating checks into applications. CyberSecEval, one...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    CutLER

    CutLER

    Code release for Cut and Learn for Unsupervised Object Detection

    CutLER is an approach for unsupervised object detection and instance segmentation that trains detectors without human-annotated labels, and the repo also includes VideoCutLER for unsupervised video instance segmentation. The method follows a “Cut-and-LEaRn” recipe: bootstrap object proposals, refine them iteratively, and train detection/segmentation heads to discover objects across diverse datasets. The codebase provides training and inference scripts, model configs, and references to...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    FastAPI-MCP

    FastAPI-MCP

    Expose your FastAPI endpoints as Model Context Protocol (MCP) tools

    fastapi_mcp lets you expose existing FastAPI endpoints as Model Context Protocol (MCP) tools with minimal setup, so AI agents can call your app as first-class tools. Rather than acting as a thin converter, it’s built as a native FastAPI extension that understands dependency injection, so you can reuse Depends() for authentication and authorization across your MCP tools. The server speaks directly to your app over its ASGI interface, avoiding extra HTTP hops between the MCP layer and your...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    MetaCLIP

    MetaCLIP

    ICLR2024 Spotlight: curation/training code, metadata, distribution

    MetaCLIP is a research codebase that extends the CLIP framework into a meta-learning / continual learning regime, aiming to adapt CLIP-style models to new tasks or domains efficiently. The goal is to preserve CLIP’s strong zero-shot transfer capability while enabling fast adaptation to domain shifts or novel class sets with minimal data and without catastrophic forgetting. The repository provides training logic, adaptation strategies (e.g. prompt tuning, adapter modules), and evaluation...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    vJEPA-2

    vJEPA-2

    PyTorch code and models for VJEPA2 self-supervised learning from video

    VJEPA2 is a next-generation self-supervised learning framework for video that extends the “predict in representation space” idea from i-JEPA to the temporal domain. Instead of reconstructing pixels, it predicts the missing high-level embeddings of masked space-time regions using a context encoder and a slowly updated target encoder. This objective encourages the model to learn semantics, motion, and long-range structure without the shortcuts that pixel-level losses can invite. The...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Large Concept Model

    Large Concept Model

    Language modeling in a sentence representation space

    Large Concept Model is a research codebase centered on concept-centric representation learning at scale, aiming to capture shared structure across many categories and modalities. It organizes training around concepts (rather than just raw labels), encouraging models to understand attributes, relations, and compositional structure that transfer across tasks. The repository provides training loops, data tooling, and evaluation routines to learn and probe these concept embeddings, typically...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    JEPA

    JEPA

    PyTorch code and models for V-JEPA self-supervised learning from video

    JEPA (Joint-Embedding Predictive Architecture) captures the idea of predicting missing high-level representations rather than reconstructing pixels, aiming for robust, scalable self-supervised learning. A context encoder ingests visible regions and predicts target embeddings for masked regions produced by a separate target encoder, avoiding low-level reconstruction losses that can overfit to texture. This makes learning focus on semantics and structure, yielding features that transfer well...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Flow Matching

    Flow Matching

    A PyTorch library for implementing flow matching algorithms

    flow_matching is a PyTorch library implementing flow matching algorithms in both continuous and discrete settings, enabling generative modeling via matching vector fields rather than diffusion. The underlying idea is to parameterize a flow (a time-dependent vector field) that transports samples from a simple base distribution to a target distribution, and train via matching of flows without requiring score estimation or noisy corruption—this can lead to more efficient or stable generative...
    Downloads: 0 This Week
    Last Update:
    See Project