Showing 172 open source projects for "using"

View related business solutions
  • Retool your internal operations Icon
    Retool your internal operations

    Generate secure, production-grade apps that connect to your business data. Not just prototypes, but tools your team can actually deploy.

    Build internal software that meets enterprise security standards without waiting on engineering resources. Retool connects to your databases, APIs, and data sources while maintaining the permissions and controls you need. Create custom dashboards, admin tools, and workflows from natural language prompts—all deployed in your cloud with security baked in. Stop duct-taping operations together, start building in Retool.
    Build an app in Retool
  • Find Hidden Risks in Windows Task Scheduler Icon
    Find Hidden Risks in Windows Task Scheduler

    Free diagnostic script reveals configuration issues, error patterns, and security risks. Instant HTML report.

    Windows Task Scheduler might be hiding critical failures. Download the free JAMS diagnostic tool to uncover problems before they impact production—get a color-coded risk report with clear remediation steps in minutes.
    Download Free Tool
  • 1
    XiaoZhi AI Chatbot

    XiaoZhi AI Chatbot

    Build your own AI friend

    xiaozhi-esp32 is an open-source project that guides users in building their own AI-powered conversational companion using the ESP32 microcontroller. The project provides detailed instructions on assembling the hardware, setting up the software, and integrating AI models to enable natural language interactions. This DIY approach offers an accessible entry point into AI and hardware development.
    Downloads: 135 This Week
    Last Update:
    See Project
  • 2
    Torch-TensorRT

    Torch-TensorRT

    PyTorch/TorchScript/FX compiler for NVIDIA GPUs using TensorRT

    ...Unlike PyTorch’s Just-In-Time (JIT) compiler, Torch-TensorRT is an Ahead-of-Time (AOT) compiler, meaning that before you deploy your TorchScript code, you go through an explicit compile step to convert a standard TorchScript program into a module targeting a TensorRT engine. Torch-TensorRT operates as a PyTorch extension and compiles modules that integrate into the JIT runtime seamlessly. After compilation using the optimized graph should feel no different than running a TorchScript module. You also have access to TensorRT’s suite of configurations at compile time, so you are able to specify operating precision (FP32/FP16/INT8) and other settings for your module.
    Downloads: 8 This Week
    Last Update:
    See Project
  • 3
    sherpa-onnx

    sherpa-onnx

    Speech-to-text, text-to-speech, and speaker recognition

    Speech-to-text, text-to-speech, and speaker recognition using next-gen Kaldi with onnxruntime without an Internet connection. Support embedded systems, Android, iOS, Raspberry Pi, RISC-V, x86_64 servers, websocket server/client, C/C++, Python, Kotlin, C#, Go, NodeJS, Java, Swift, Dart, JavaScript, Flutter.
    Downloads: 81 This Week
    Last Update:
    See Project
  • 4
    ONNX Runtime

    ONNX Runtime

    ONNX Runtime: cross-platform, high performance ML inferencing

    ONNX Runtime is a cross-platform inference and training machine-learning accelerator. ONNX Runtime inference can enable faster customer experiences and lower costs, supporting models from deep learning frameworks such as PyTorch and TensorFlow/Keras as well as classical machine learning libraries such as scikit-learn, LightGBM, XGBoost, etc. ONNX Runtime is compatible with different hardware, drivers, and operating systems, and provides optimal performance by leveraging hardware accelerators...
    Downloads: 52 This Week
    Last Update:
    See Project
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 5
    Compute Library

    Compute Library

    The Compute Library is a set of computer vision and machine learning

    The Compute Library is a set of computer vision and machine learning functions optimized for both Arm CPUs and GPUs using SIMD technologies. The library provides superior performance to other open-source alternatives and immediate support for new Arm® technologies e.g. SVE2.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 6
    Emscripten

    Emscripten

    Emscripten: An LLVM-to-WebAssembly Compiler

    Emscripten is a complete open-source compiler toolchain that transforms C, C++, and other LLVM-based source code into WebAssembly (and JavaScript), enabling native‑like applications to run in web browsers, Node.js, and other Wasm environments. While Emscripten mostly focuses on compiling C and C++ using Clang, it can be integrated with other LLVM-using compilers (for example, Rust has Emscripten integration, with the wasm32-unknown-emscripten and asmjs-unknown-emscripten targets). Emscripten provides Web support for popular portable APIs such as OpenGL and SDL2, allowing complex graphical native applications to be ported, such as the Unity game engine and Google Earth. ...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 7
    Pedalboard

    Pedalboard

    A Python library for audio

    ...It supports the most popular audio file formats and a number of common audio effects out of the box and also allows the use of VST3® and Audio Unit formats for loading third-party software instruments and effects. pedalboard was built by Spotify’s Audio Intelligence Lab to enable using studio-quality audio effects from within Python and TensorFlow. Internally at Spotify, pedalboard is used for data augmentation to improve machine learning models and to help power features like Spotify’s AI DJ and AI Voice Translation. pedalboard also helps in the process of content creation, making it possible to add effects to audio without using a Digital Audio Workstation.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 8
    Simd Library

    Simd Library

    C++ image processing and machine learning library with using of SIMD

    ...It provides many useful high-performance algorithms for image processing such as pixel format conversion, image scaling and filtration, extraction of statistical information from images, motion detection, object detection and classification, neural networks. The algorithms are optimized with using of different SIMD CPU extensions. In particular, the library supports the following CPU extensions: SSE, AVX, AVX-512, and AMX for x86/x64, and NEON for ARM. The Simd Library has C API and also contains useful C++ classes and functions to facilitate access to C API. The library supports dynamic and static linking, 32-bit and 64-bit Windows and Linux, MSVS, G++ and Clang compilers, MSVS projects, and CMake build systems.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 9
    TensorRT

    TensorRT

    C++ library for high performance inference on NVIDIA GPUs

    NVIDIA® TensorRT™ is an SDK for high-performance deep learning inference. It includes a deep learning inference optimizer and runtime that delivers low latency and high throughput for deep learning inference applications. TensorRT-based applications perform up to 40X faster than CPU-only platforms during inference. With TensorRT, you can optimize neural network models trained in all major frameworks, calibrate for lower precision with high accuracy, and deploy to hyperscale data centers,...
    Downloads: 17 This Week
    Last Update:
    See Project
  • Desktop and Mobile Device Management Software Icon
    Desktop and Mobile Device Management Software

    It's a modern take on desktop management that can be scaled as per organizational needs.

    Desktop Central is a unified endpoint management (UEM) solution that helps in managing servers, laptops, desktops, smartphones, and tablets from a central location.
    Learn More
  • 10
    GoogleTest

    GoogleTest

    Google Testing and Mocking Framework

    ...This GoogleTest project is actually a union of what used to be two separate projects: the old GoogleTest and GoogleMock, an extension of GoogleTest for writing and using C++ mock classes. Since they were so closely related, they were merged to create an even better GoogleTest. GoogleTest features an xUnit test framework, a rich set of assertions, user-defined assertions, death tests, among many others. It's been used on a variety of platforms, including Cygwin, Symbian, MinGW and PlatformIO.
    Downloads: 13 This Week
    Last Update:
    See Project
  • 11
    TensorRT Backend For ONNX

    TensorRT Backend For ONNX

    ONNX-TensorRT: TensorRT backend for ONNX

    ...Building INetwork objects in full dimensions mode with dynamic shape support requires calling the C++ and Python API. Current supported ONNX operators are found in the operator support matrix. For building within docker, we recommend using and setting up the docker containers as instructed in the main (TensorRT repository). Note that this project has a dependency on CUDA. By default the build will look in /usr/local/cuda for the CUDA toolkit installation. If your CUDA path is different, overwrite the default path. ONNX models can be converted to serialized TensorRT engines using the onnx2trt executable.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 12
    Vespa

    Vespa

    The open big data serving engine

    ...Vespa lets you build applications which does this online, typically combining fast vector search and filtering with evaluation of machine-learned models over the items. This makes it possible to make recommendations specifically for each user or situation, using completely up to date information.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 13
    OpenMLDB

    OpenMLDB

    OpenMLDB is an open-source machine learning database

    ...OpenMLDB is an open-source machine learning database that is committed to solving the data and feature challenges. OpenMLDB has been deployed in hundreds of real-world enterprise applications. It prioritizes the capability of feature engineering using SQL for open-source, which offers a feature platform enabling consistent features for training and inference. Real-time features are essential for many machine learning applications, such as real-time personalized recommendations and risk analytics. However, a feature engineering script developed by data scientists (Python scripts in most cases) cannot be directly deployed into production for online inference because it usually cannot meet the engineering requirements, such as low latency, high throughput and high availability.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    ViZDoom

    ViZDoom

    Doom-based AI research platform for reinforcement learning

    ViZDoom allows developing AI bots that play Doom using only the visual information (the screen buffer). It is primarily intended for research in machine visual learning, and deep reinforcement learning, in particular. ViZDoom is based on ZDOOM, the most popular modern source-port of DOOM. This means compatibility with a huge range of tools and resources that can be used to create custom scenarios, availability of detailed documentation of the engine and tools and support of Doom community. ...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 15
    FlashMLA

    FlashMLA

    FlashMLA: Efficient Multi-head Latent Attention Kernels

    ...It provides optimized kernels for MLA decoding, including support for variable-length sequences, helping reduce latency and increase throughput in model inference systems using that attention style. The library supports both BF16 and FP16 data types, and includes a paged KV cache implementation with a block size of 64 to efficiently manage memory during decoding. On very compute-bound settings, it can reach up to ~660 TFLOPS on H800 SXM5 hardware, while in memory-bound configurations it can push memory throughput to ~3000 GB/s. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 16
    CUTLASS

    CUTLASS

    CUDA Templates for Linear Algebra Subroutines

    CUTLASS is a collection of CUDA C++ template abstractions for implementing high-performance matrix-multiplication (GEMM) and related computations at all levels and scales within CUDA. It incorporates strategies for hierarchical decomposition and data movement similar to those used to implement cuBLAS and cuDNN. CUTLASS decomposes these "moving parts" into reusable, modular software components abstracted by C++ template classes. These thread-wide, warp-wide, block-wide, and device-wide...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 17
    pytorch-cpp

    pytorch-cpp

    C++ Implementation of PyTorch Tutorials for Everyone

    ...You can choose to only build tutorials in one of the categories basics, intermediate, advanced or popular. You can build and run the tutorials (on CPU) in a Docker container using the provided Dockerfile and docker-compose.yml files.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    MuJoCo MPC

    MuJoCo MPC

    Real-time behaviour synthesis with MuJoCo, using Predictive Control

    MuJoCo MPC (MJPC) is an advanced interactive framework for real-time model predictive control (MPC) built on top of the MuJoCo physics engine, developed by Google DeepMind. It allows researchers and roboticists to design, visualize, and execute complex control tasks for simulated or real robotic systems. MJPC integrates a high-performance GUI and multiple predictive control algorithms, including iLQG, gradient descent, and Predictive Sampling — a competitive, derivative-free method that...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    fairseq2

    fairseq2

    FAIR Sequence Modeling Toolkit 2

    ...Unlike the original fairseq—which evolved into a large, monolithic codebase—fairseq2 introduces a clean, plugin-oriented architecture designed for long-term maintainability and rapid experimentation. It supports multi-GPU and multi-node distributed training using DDP, FSDP, and tensor parallelism, capable of scaling up to 70B+ parameter models. The framework integrates seamlessly with PyTorch 2.x features such as torch.compile, Fully Sharded Data Parallel (FSDP), and modern configuration management.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    TensorFlow Serving

    TensorFlow Serving

    Serving system for machine learning models

    ...TensorFlow Serving provides out-of-the-box integration with TensorFlow models, but can be easily extended to serve other types of models and data. The easiest and most straight-forward way of using TensorFlow Serving is with Docker images. We highly recommend this route unless you have specific needs that are not addressed by running in a container. In order to serve a Tensorflow model, simply export a SavedModel from your Tensorflow program. SavedModel is a language-neutral, recoverable, hermetic serialization format that enables higher-level systems and tools to produce, consume, and transform TensorFlow models.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Tiny CUDA Neural Networks

    Tiny CUDA Neural Networks

    Lightning fast C++/CUDA neural network framework

    ...Lower-end cards must reduce the n_neurons parameter or use the CutlassMLP (better compatibility but slower) instead. tiny-cuda-nn comes with a PyTorch extension that allows using the fast MLPs and input encodings from within a Python context. These bindings can be significantly faster than full Python implementations; in particular for the multiresolution hash encoding.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    DeepDetect

    DeepDetect

    Deep Learning API and Server in C++14 support for Caffe, PyTorch

    ...While the Open Source Deep Learning Server is the core element, with REST API, and multi-platform support that allows training & inference everywhere, the Deep Learning Platform allows higher level management for training neural network models and using them as if they were simple code snippets. Ready for applications of image tagging, object detection, segmentation, OCR, Audio, Video, Text classification, CSV for tabular data and time series. Neural network templates for the most effective architectures for GPU, CPU, and Embedded devices. Training in a few hours and with small data thanks to 25+ pre-trained models. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Armadillo

    Armadillo

    fast C++ library for linear algebra & scientific computing

    * Fast C++ library for linear algebra (matrix maths) and scientific computing * Easy to use functions and syntax, deliberately similar to Matlab / Octave * Uses template meta-programming techniques to increase efficiency * Provides user-friendly wrappers for OpenBLAS, Intel MKL, LAPACK, ATLAS, ARPACK, SuperLU and FFTW libraries * Useful for machine learning, pattern recognition, signal processing, bioinformatics, statistics, finance, etc. * Downloads:...
    Leader badge
    Downloads: 2,174 This Week
    Last Update:
    See Project
  • 24
    AI File Sorter

    AI File Sorter

    Local AI file organization with image-based rename suggestions

    ...AI File Sorter helps tidy up cluttered folders such as Downloads, external drives, or NAS storage by grouping files based on filenames, extensions, folder context, and learned organization patterns. The application can run fully offline using local AI models such as Mistral 7B or LLaMa 3B. When using local models, all processing happens entirely on your device — no files, images, or metadata are uploaded, and no telemetry is sent.
    Downloads: 278 This Week
    Last Update:
    See Project
  • 25
    Deface GUI -  Face Anonymization Tool

    Deface GUI - Face Anonymization Tool

    Graphical User Interface Face Anonymization Tool

    This application is a professional tool with a graphical user interface that enables anonymization of faces using the Deface Engine. Cross-Platform Compatible (Linux-Windows) NOTE: To use on Windows, first install Python. Then, if necessary, install “pip install deface” (only if necessary).
    Downloads: 4 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • 5
  • Next