Showing 26 open source projects for "graph"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Context for your AI agents Icon
    Context for your AI agents

    Crawl websites, sync to vector databases, and power RAG applications. Pre-built integrations for LLM pipelines and AI assistants.

    Build data pipelines that feed your AI models and agents without managing infrastructure. Crawl any website, transform content, and push directly to your preferred vector store. Use 10,000+ tools for RAG applications, AI assistants, and real-time knowledge bases. Monitor site changes, trigger workflows on new data, and keep your AIs fed with fresh, structured information. Cloud-native, API-first, and free to start until you need to scale.
    Try for free
  • 1
    ONNX

    ONNX

    Open standard for machine learning interoperability

    ...Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides an open source format for AI models, both deep learning and traditional ML. It defines an extensible computation graph model, as well as definitions of built-in operators and standard data types. Currently we focus on the capabilities needed for inferencing (scoring). ONNX is widely supported and can be found in many frameworks, tools, and hardware. Enabling interoperability between different frameworks and streamlining the path from research to production helps increase the speed of innovation in the AI community.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 2
    ONNX Runtime

    ONNX Runtime

    ONNX Runtime: cross-platform, high performance ML inferencing

    ...ONNX Runtime is compatible with different hardware, drivers, and operating systems, and provides optimal performance by leveraging hardware accelerators where applicable alongside graph optimizations and transforms. ONNX Runtime training can accelerate the model training time on multi-node NVIDIA GPUs for transformer models with a one-line addition for existing PyTorch training scripts. Support for a variety of frameworks, operating systems and hardware platforms. Built-in optimizations that deliver up to 17X faster inferencing and up to 1.4X faster training.
    Downloads: 55 This Week
    Last Update:
    See Project
  • 3
    TensorFlow

    TensorFlow

    TensorFlow is an open source library for machine learning

    ...The platform can be easily deployed on multiple CPUs, GPUs and Google's proprietary chip, the tensor processing unit (TPU). TensorFlow expresses its computations as dataflow graphs, with each node in the graph representing an operation. Nodes take tensors—multidimensional arrays—as input and produce tensors as output. The framework allows for these algorithms to be run in C++ for better performance, while the multiple levels of APIs let the user determine how high or low they wish the level of abstraction to be in the models produced. ...
    Downloads: 24 This Week
    Last Update:
    See Project
  • 4
    Torch-TensorRT

    Torch-TensorRT

    PyTorch/TorchScript/FX compiler for NVIDIA GPUs using TensorRT

    ...Unlike PyTorch’s Just-In-Time (JIT) compiler, Torch-TensorRT is an Ahead-of-Time (AOT) compiler, meaning that before you deploy your TorchScript code, you go through an explicit compile step to convert a standard TorchScript program into a module targeting a TensorRT engine. Torch-TensorRT operates as a PyTorch extension and compiles modules that integrate into the JIT runtime seamlessly. After compilation using the optimized graph should feel no different than running a TorchScript module. You also have access to TensorRT’s suite of configurations at compile time, so you are able to specify operating precision (FP32/FP16/INT8) and other settings for your module.
    Downloads: 13 This Week
    Last Update:
    See Project
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 5
    Fastbot-Android Open Source Handbook

    Fastbot-Android Open Source Handbook

    Testing tool for modeling GUI transitions

    Fastbot_Android (Fastbot 2.0) is a model-based automated testing tool by ByteDance designed to discover stability or usability issues in Android apps by modeling GUI transitions rather than relying purely on random interactions. It blends machine learning and reinforcement-learning approaches to build a transition graph of UI states and use that model to intelligently explore possible user interactions — aiming to replicate more human-like usage patterns and uncover hidden bugs, crashes, or edge cases. Compared to traditional random-input tools (like Monkey), Fastbot supports much faster action insertion (up to ~12 actions per second) and can handle a variety of Android OS versions (from older through modern, including customized OS variants). ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    OneFlow

    OneFlow

    OneFlow is a deep learning framework designed to be user-friendly

    OneFlow is a deep learning framework designed to be user-friendly, scalable and efficient. An extension for OneFlow to target third-party compiler, such as XLA, TensorRT and OpenVINO etc.CUDA runtime is statically linked into OneFlow. OneFlow will work on a minimum supported driver, and any driver beyond. For more information. Distributed performance (efficiency) is the core technical difficulty of the deep learning framework. OneFlow focuses on performance improvement and heterogeneous...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Proximus for Ryzen AI

    Proximus for Ryzen AI

    Runtime extension of Proximus enabling Deployment on AMD Ryzen™ AI

    This project extends the Proximus development environment to support deployment of AI workloads on next-generation AMD Ryzen™ AI processors, such as the Ryzen™ AI 7 PRO 7840U featured in the Lenovo ThinkPad T14s Gen 4 ,one of the first true AI PCs with an onboard Neural Processing Unit (NPU) capable of 16 TOPS (trillion operations per second). Originally designed for use with Windows 11 Pro, this runtime was further enhanced to work under Linux environments, allowing developers and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    dorban

    dorban

    A demo for the Svarog AI library.

    ...The Svarog AI library contains a new optimization algorithm based on so called hidden variables. In order to achieve the objective Dorban will try to convince Pregor to accompany him, and together they will try to find the vampire in a graph with 5 city nodes. When accompanying Dorban use menu item "follow orders" to follow his orders.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    MXNet

    MXNet

    Lightweight, Portable, Flexible Distributed/Mobile Deep Learning

    ...It allows you to mix symbolic and imperative programming to maximize efficiency and productivity. At its core, MXNet contains a dynamic dependency scheduler that automatically parallelizes both symbolic and imperative operations on the fly. A graph optimization layer on top of that makes symbolic execution fast and memory efficient. MXNet is portable and lightweight, scalable to many GPUs and machines. Apache MXNet is more than a deep learning project. It is a community on a mission of democratizing AI. It is a collection of blue prints and guidelines for building deep learning systems, and interesting insights of DL systems for hackers.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Grafana: The open and composable observability platform Icon
    Grafana: The open and composable observability platform

    Faster answers, predictable costs, and no lock-in built by the team helping to make observability accessible to anyone.

    Grafana is the open source analytics & monitoring solution for every database.
    Learn More
  • 10
    MACE

    MACE

    Deep learning inference framework optimized for mobile platforms

    ...UI responsiveness guarantee is sometimes obligatory when running a model. Mechanism like automatically breaking OpenCL kernel into small units is introduced to allow better preemption for the UI rendering task. Graph level memory allocation optimization and buffer reuse are supported. The core library tries to keep minimum external dependencies to keep the library footprint small.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Euler

    Euler

    A distributed graph deep learning framework.

    ...Data in the fields of text, speech, and images is easier to process into a grid-like type of Euclidean space, which is suitable for processing by existing deep learning models. Graph is a data type in non-Euclidean space and cannot be directly applied to existing methods, requiring a specially designed graph neural network system. Graph-based learning methods such as graph neural networks combine end-to-end learning with inductive reasoning, and are expected to solve a series of problems such as relational reasoning and interpretability that deep learning cannot handle.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    SINGA

    SINGA

    A distributed deep learning platform

    ...SINGA supports data parallel training across multiple GPUs (on a single node or across different nodes). SINGA supports various popular optimizers including stochastic gradient descent with momentum, Adam, RMSProp, and AdaGrad, etc. SINGA records the computation graph and applies the backward propagation automatically after forward propagation. The optimization of memory are implemented in the Device class. SINGA supports loading ONNX format models and saving models defined using SINGA APIs into ONNX format, which enables AI developers to use models across different libraries and tools. SINGA supports the time profiling of each of the operators buffered in the graph. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    nGraph

    nGraph

    nGraph has moved to OpenVINO

    ...We strongly believe in providing freedom, performance, and ease of use to AI developers. Our documentation has extensive information about how to use nGraph Compiler stack to create an nGraph computational graph, integrate custom frameworks, and to interact with supported backends.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 14
    SLING

    SLING

    A natural language frame semantics parser

    ...We do not yet have a full system that can extract facts from arbitrary text, but we have built a number of the subsystems needed for such a system. The SLING frame store is our basic framework for building and manipulating frame semantic graph structures. The Wiki flow pipeline can take a raw dump of Wikidata and convert this into one big frame graph.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Cogitant
    The Cogitant library is a set of C++ classes enabling to easily build applications based on the Conceptual Graph model.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    This project aims to develop and share fast frequent subgraph mining and graph learning algorithms. Currently we release the frequent subgraph mining package FFSM and later we will include new functions for graph regression and classification package
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17

    graphnet

    AI project using a graph technique on written text.

    Experiments using a data sequencing technique on English language sentences.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    The MaxParser is written in c++ and can parse with first, second, third and fourth order projective Graph-based Dependency parsing algorithm. The project is the new version of the project "Max-MSTParser". If you want to use this software for research, please reference this web address in your papers
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19

    Graphlet kernel framework

    Calculates similarity between neighborhoods of two vertices in a graph

    This software package provides a framework for calculating similarity between neighborhoods rooted at two vertices of interest in a labeled graph (undirected or directed). The list of available similarity functions includes: cumulative random walk, standard random walk, standard graphlet kernel, edit distance graphlet kernel, label substitution graphlet kernel and edge indel graphlet kernel. The graphlet kernel framework can be used for vertex (node) classification in graphs, kernel-based clustering, or community detection. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    BIL++
    BIL++ is a set of standalone C++ packages for data processing in Bioinformatics (Graph mining, Bayesian networks, Genetic algorithm, Discretization, Gene expression data analysis, Hypothesis testing).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    The E* algorithm is a path planner for (mobile) robotics. Unlike A*, which constrains movements to graph edges, it produces smooth trajectories by interpolating between edges. Like D*, it supports dynamic replanning after local path cost changes.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    An adaptive neural network and evolutionary algorithms approach to the machine learning tasks, based on the modular graph grammars. Tested on the "two spirals problem" and other tasks. Implemented in Matlab and C++.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Graph Process Platform implements and automates any graph-based process for example a manufacturing process, trading system or business process workflow.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    TooCoM, a Tool to Operationalize an Ontology with the COnceptual graph Model. TooCoM allows the user to edit, test, operationalize and use in an inference engine an heavy-weight ontology in a graphical way by using the Entity-Relationship paradigm.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    An open architecture for simulating swarm intelligent systems. Includes pheromone diffusion model, agent motivation map and graph world topology with tokens. Simulations are configured using XML. Simulations are visualized using GLUT.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next