...The model is efficient for both cloud inference with vLLM and local deployment using llama.cpp or Ollama, thanks to its bf16 precision and AMP training. While the base model is not fine-tuned for downstream tasks, it is designed to be easily adapted through supervised fine-tuning (SFT) or reinforcement learning (RL). Benchmarks on RepoBench, SAFIM, and HumanEval demonstrate its competitive performance, with specialized fine-tuned versions for Python already showing strong improvements.