22 projects for "python q learning" with 2 filters applied:

  • Build Securely on AWS with Proven Frameworks Icon
    Build Securely on AWS with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • Business Automation Software for SMBs Icon
    Business Automation Software for SMBs

    Fed up with not having the time, money and resources to grow your business?

    The only software you need to increase cash flow, optimize resource utilization, and take control of your assets and inventory.
    Learn More
  • 1
    OpenAI Quickstart Python

    OpenAI Quickstart Python

    Python example app from the OpenAI API quickstart tutorial

    openai-quickstart-python is an official OpenAI repository containing multiple Python quickstart applications that demonstrate how to use different OpenAI API endpoints, including Chat and Assistants. It provides practical, beginner-friendly examples to help developers quickly learn how to send requests, handle responses, and build basic applications using the OpenAI Python SDK. The examples folder includes small, self-contained projects showcasing common use cases like chat completions, tool...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 2
    DeepSeek R1

    DeepSeek R1

    Open-source, high-performance AI model with advanced reasoning

    DeepSeek-R1 is an open-source large language model developed by DeepSeek, designed to excel in complex reasoning tasks across domains such as mathematics, coding, and language. DeepSeek R1 offers unrestricted access for both commercial and academic use. The model employs a Mixture of Experts (MoE) architecture, comprising 671 billion total parameters with 37 billion active parameters per token, and supports a context length of up to 128,000 tokens. DeepSeek-R1's training regimen uniquely...
    Downloads: 56 This Week
    Last Update:
    See Project
  • 3
    DeepSeek-V3

    DeepSeek-V3

    Powerful AI language model (MoE) optimized for efficiency/performance

    DeepSeek-V3 is a robust Mixture-of-Experts (MoE) language model developed by DeepSeek, featuring a total of 671 billion parameters, with 37 billion activated per token. It employs Multi-head Latent Attention (MLA) and the DeepSeekMoE architecture to enhance computational efficiency. The model introduces an auxiliary-loss-free load balancing strategy and a multi-token prediction training objective to boost performance. Trained on 14.8 trillion diverse, high-quality tokens, DeepSeek-V3...
    Downloads: 48 This Week
    Last Update:
    See Project
  • 4
    DINOv3

    DINOv3

    Reference PyTorch implementation and models for DINOv3

    DINOv3 is the third-generation iteration of Meta’s self-supervised visual representation learning framework, building upon the ideas from DINO and DINOv2. It continues the paradigm of learning strong image representations without labels using teacher–student distillation, but introduces a simplified and more scalable training recipe that performs well across datasets and architectures. DINOv3 removes the need for complex augmentations or momentum encoders, streamlining the pipeline while...
    Downloads: 7 This Week
    Last Update:
    See Project
  • Free and Open Source HR Software Icon
    Free and Open Source HR Software

    OrangeHRM provides a world-class HRIS experience and offers everything you and your team need to be that HR hero you know that you are.

    Give your HR team the tools they need to streamline administrative tasks, support employees, and make informed decisions with the OrangeHRM free and open source HR software.
    Learn More
  • 5
    Sapiens

    Sapiens

    High-resolution models for human tasks

    Sapiens is a research framework from Meta AI focused on embodied intelligence and human-like multimodal learning, aiming to train agents that can perceive, reason, and act in complex environments. It integrates sensory inputs such as vision, audio, and proprioception into a unified learning architecture that allows agents to understand and adapt to their surroundings dynamically. The project emphasizes long-horizon reasoning and cross-modal grounding—connecting language, perception, and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    MetaCLIP

    MetaCLIP

    ICLR2024 Spotlight: curation/training code, metadata, distribution

    MetaCLIP is a research codebase that extends the CLIP framework into a meta-learning / continual learning regime, aiming to adapt CLIP-style models to new tasks or domains efficiently. The goal is to preserve CLIP’s strong zero-shot transfer capability while enabling fast adaptation to domain shifts or novel class sets with minimal data and without catastrophic forgetting. The repository provides training logic, adaptation strategies (e.g. prompt tuning, adapter modules), and evaluation...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    GLM-4.5

    GLM-4.5

    GLM-4.5: Open-source LLM for intelligent agents by Z.ai

    GLM-4.5 is a cutting-edge open-source large language model designed by Z.ai for intelligent agent applications. The flagship GLM-4.5 model has 355 billion total parameters with 32 billion active parameters, while the compact GLM-4.5-Air version offers 106 billion total parameters and 12 billion active parameters. Both models unify reasoning, coding, and intelligent agent capabilities, providing two modes: a thinking mode for complex reasoning and tool usage, and a non-thinking mode for...
    Downloads: 222 This Week
    Last Update:
    See Project
  • 8
    DINOv2

    DINOv2

    PyTorch code and models for the DINOv2 self-supervised learning

    DINOv2 is a self-supervised vision learning framework that produces strong, general-purpose image representations without using human labels. It builds on the DINO idea of student–teacher distillation and adapts it to modern Vision Transformer backbones with a carefully tuned recipe for data augmentation, optimization, and multi-crop training. The core promise is that a single pretrained backbone can transfer well to many downstream tasks—from linear probing on classification to retrieval,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Phi-3-MLX

    Phi-3-MLX

    Phi-3.5 for Mac: Locally-run Vision and Language Models

    Phi-3-Vision-MLX is an Apple MLX (machine learning on Apple silicon) implementation of Phi-3 Vision, a lightweight multi-modal model designed for vision and language tasks. It focuses on running vision-language AI efficiently on Apple hardware like M1 and M2 chips.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Total Network Visibility for Network Engineers and IT Managers Icon
    Total Network Visibility for Network Engineers and IT Managers

    Network monitoring and troubleshooting is hard. TotalView makes it easy.

    This means every device on your network, and every interface on every device is automatically analyzed for performance, errors, QoS, and configuration.
    Learn More
  • 10
    DeiT (Data-efficient Image Transformers)
    DeiT (Data-efficient Image Transformers) shows that Vision Transformers can be trained competitively on ImageNet-1k without external data by using strong training recipes and knowledge distillation. Its key idea is a specialized distillation strategy—including a learnable “distillation token”—that lets a transformer learn effectively from a CNN or transformer teacher on modest-scale datasets. The project provides compact ViT variants (Tiny/Small/Base) that achieve excellent...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Tencent-Hunyuan-Large

    Tencent-Hunyuan-Large

    Open-source large language model family from Tencent Hunyuan

    Tencent-Hunyuan-Large is the flagship open-source large language model family from Tencent Hunyuan, offering both pre-trained and instruct (fine-tuned) variants. It is designed with long-context capabilities, quantization support, and high performance on benchmarks across general reasoning, mathematics, language understanding, and Chinese / multilingual tasks. It aims to provide competitive capability with efficient deployment and inference. FP8 quantization support to reduce memory usage...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Large Concept Model

    Large Concept Model

    Language modeling in a sentence representation space

    Large Concept Model is a research codebase centered on concept-centric representation learning at scale, aiming to capture shared structure across many categories and modalities. It organizes training around concepts (rather than just raw labels), encouraging models to understand attributes, relations, and compositional structure that transfer across tasks. The repository provides training loops, data tooling, and evaluation routines to learn and probe these concept embeddings, typically...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    GLM-4-32B-0414

    GLM-4-32B-0414

    Open Multilingual Multimodal Chat LMs

    GLM-4-32B-0414 is a powerful open-source large language model featuring 32 billion parameters, designed to deliver performance comparable to leading models like OpenAI’s GPT series. It supports multilingual and multimodal chat capabilities with an extensive 32K token context length, making it ideal for dialogue, reasoning, and complex task completion. The model is pre-trained on 15 trillion tokens of high-quality data, including substantial synthetic reasoning datasets, and further enhanced...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    FinGPT

    FinGPT

    Open-Source Financial Large Language Models!

    FinGPT is an open-source large language model tailored specifically for financial tasks. Developed by AI4Finance Foundation, it is designed to assist with various financial applications, such as forecasting, financial sentiment analysis, and portfolio management. FinGPT has been trained on a diverse range of financial datasets, making it a powerful tool for finance professionals looking to leverage AI for data-driven decision-making. The model is freely available on platforms like Hugging...
    Leader badge
    Downloads: 16 This Week
    Last Update:
    See Project
  • 15
    GPT-NeoX

    GPT-NeoX

    Implementation of model parallel autoregressive transformers on GPUs

    This repository records EleutherAI's library for training large-scale language models on GPUs. Our current framework is based on NVIDIA's Megatron Language Model and has been augmented with techniques from DeepSpeed as well as some novel optimizations. We aim to make this repo a centralized and accessible place to gather techniques for training large-scale autoregressive language models, and accelerate research into large-scale training. For those looking for a TPU-centric codebase, we...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 16
    ConvNeXt V2

    ConvNeXt V2

    Code release for ConvNeXt V2 model

    ConvNeXt V2 is an evolution of the ConvNeXt architecture that co-designs convolutional networks alongside self-supervised learning. The V2 version introduces a fully convolutional masked autoencoder (FCMAE) framework where parts of the image are masked and the network reconstructs the missing content, marrying convolutional inductive bias with powerful pretraining. A key innovation is a new Global Response Normalization (GRN) layer added to the ConvNeXt backbone, which enhances feature...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Video Pre-Training

    Video Pre-Training

    Learning to Act by Watching Unlabeled Online Videos

    The Video PreTraining (VPT) repository provides code and model artifacts for a project where agents learn to act by watching human gameplay videos—specifically, gameplay of Minecraft—using behavioral cloning. The idea is to learn general priors of control from large-scale, unlabeled video data, and then optionally fine-tune those priors for more goal-directed behavior via environment interaction. The repository contains demonstration models of different widths, fine-tuned variants (e.g. for...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    MAE (Masked Autoencoders)

    MAE (Masked Autoencoders)

    PyTorch implementation of MAE

    MAE (Masked Autoencoders) is a self-supervised learning framework for visual representation learning using masked image modeling. It trains a Vision Transformer (ViT) by randomly masking a high percentage of image patches (typically 75%) and reconstructing the missing content from the remaining visible patches. This forces the model to learn semantic structure and global context without supervision. The encoder processes only the visible patches, while a lightweight decoder reconstructs the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    PyTorch-BigGraph

    PyTorch-BigGraph

    Generate embeddings from large-scale graph-structured data

    PyTorch-BigGraph (PBG) is a system for learning embeddings on massive graphs—think billions of nodes and edges—using partitioning and distributed training to keep memory and compute tractable. It shards entities into partitions and buckets edges so that each training pass only touches a small slice of parameters, which drastically reduces peak RAM and enables horizontal scaling across machines. PBG supports multi-relation graphs (knowledge graphs) with relation-specific scoring functions,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    MUSE

    MUSE

    A library for Multilingual Unsupervised or Supervised word Embeddings

    MUSE is a framework for learning multilingual word embeddings that live in a shared space, enabling bilingual lexicon induction, cross-lingual retrieval, and zero-shot transfer. It supports both supervised alignment with seed dictionaries and unsupervised alignment that starts without parallel data by using adversarial initialization followed by Procrustes refinement. The code can align pre-trained monolingual embeddings (such as fastText) across dozens of languages and provides standardized...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    InfoGAN

    InfoGAN

    Code for reproducing key results in the paper

    The InfoGAN repository contains the original implementation used to reproduce the results in the paper “InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets”. InfoGAN is a variant of the GAN (Generative Adversarial Network) architecture that aims to learn disentangled and interpretable latent representations by maximizing the mutual information between a subset of the latent codes and the generated outputs. That extra incentive encourages the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Mellum-4b-base

    Mellum-4b-base

    JetBrains’ 4B parameter code model for completions

    ...The model is efficient for both cloud inference with vLLM and local deployment using llama.cpp or Ollama, thanks to its bf16 precision and AMP training. While the base model is not fine-tuned for downstream tasks, it is designed to be easily adapted through supervised fine-tuning (SFT) or reinforcement learning (RL). Benchmarks on RepoBench, SAFIM, and HumanEval demonstrate its competitive performance, with specialized fine-tuned versions for Python already showing strong improvements.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next