Showing 173 open source projects for "matlab%20projects"

View related business solutions
  • AI-generated apps that pass security review Icon
    AI-generated apps that pass security review

    Stop waiting on engineering. Build production-ready internal tools with AI—on your company data, in your cloud.

    Retool lets you generate dashboards, admin panels, and workflows directly on your data. Type something like “Build me a revenue dashboard on my Stripe data” and get a working app with security, permissions, and compliance built in from day one. Whether on our cloud or self-hosted, create the internal software your team needs without compromising enterprise standards or control.
    Try Retool free
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 1
    Large Language Models (LLMs)

    Large Language Models (LLMs)

    Connect MATLAB to LLM APIs, including OpenAI® Chat Completions

    This repository enables MATLAB to connect with large language models (LLMs) such as OpenAI's ChatGPT, DALL-E, Azure OpenAI, and Ollama, integrating their natural language processing and image generation capabilities directly within MATLAB environments. It facilitates creating chatbots, summarizing text, and image generation, among other tasks.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    MATLAB Deep Learning Model Hub

    MATLAB Deep Learning Model Hub

    Discover pretrained models for deep learning in MATLAB

    Discover pre-trained models for deep learning in MATLAB. Pretrained image classification networks have already learned to extract powerful and informative features from natural images. Use them as a starting point to learn a new task using transfer learning. Inputs are RGB images, the output is the predicted label and score.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    MatlabMachine

    MatlabMachine

    Machine learning algorithms

    Matlab-Machine is a comprehensive collection of machine learning algorithms implemented in MATLAB. It includes both basic and advanced techniques for classification, regression, clustering, and dimensionality reduction. Designed for educational and research purposes, the repository provides clear implementations that help users understand core ML concepts.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    LRSLibrary

    LRSLibrary

    Low-Rank and Sparse Tools for Background Modeling and Subtraction

    LRSLibrary is a MATLAB library offering a broad collection of low-rank plus sparse decomposition algorithms, primarily aimed at background/foreground modeling from videos (background subtraction) and related computer vision tasks. Compatibility across MATLAB versions (tested in R2014–R2017) The library includes matrix and tensor methods (over 100 algorithms) and has been tested across MATLAB versions from R2014 onward.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Grafana: The open and composable observability platform Icon
    Grafana: The open and composable observability platform

    Faster answers, predictable costs, and no lock-in built by the team helping to make observability accessible to anyone.

    Grafana is the open source analytics & monitoring solution for every database.
    Learn More
  • 5
    Image Fusion

    Image Fusion

    Deep Learning-based Image Fusion: A Survey

    This repository is a survey / code collection centered on deep learning–based image fusion (e.g. fusing infrared + visible light images, multi-modal fusion) methods. It catalogs many fusion algorithms (e.g. DenseFuse, FusionGAN, NestFuse, etc.), links to code implementations, and describes evaluation metrics. The repository includes a “General Evaluation Metric” subfolder containing objective fusion metrics. It is not a single monolithic tool, but rather a curated reference and aggregation...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    pycm

    pycm

    Multi-class confusion matrix library in Python

    PyCM is a multi-class confusion matrix library written in Python that supports both input data vectors and direct matrix, and a proper tool for post-classification model evaluation that supports most classes and overall statistics parameters. PyCM is the swiss-army knife of confusion matrices, targeted mainly at data scientists that need a broad array of metrics for predictive models and an accurate evaluation of large variety of classifiers.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    The Operator Splitting QP Solver

    The Operator Splitting QP Solver

    The Operator Splitting QP Solver

    ...It just works. OSQP has an easy interface to generate customized embeddable C code with no memory manager required. OSQP supports many interfaces including C/C++, Fortran, Matlab, Python, R, Julia, Rust.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    libvips

    libvips

    A fast image processing library with low memory needs

    ...It supports a large range of numeric types, from 8-bit int to 128-bit complex. Images can have any number of bands. It supports a good range of image formats, including JPEG, JPEG2000, JPEG-XL, TIFF, PNG, WebP, HEIC, AVIF, FITS, Matlab, OpenEXR, PDF, SVG, HDR, PPM / PGM / PFM, CSV, GIF, Analyze, NIfTI, DeepZoom, and OpenSlide. It can also load images via ImageMagick or GraphicsMagick, letting it work with formats like DICOM. It comes with bindings for C, C++, and the command-line. Full bindings are available for Ruby, Python, PHP, C# / .NET, Go, and Lua.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 9
    Exposure Correction

    Exposure Correction

    Learning multi-scale deep model correcting over- and under- exposed

    Exposure_Correction is a research project that provides the implementation for the paper Learning Multi-Scale Photo Exposure Correction (CVPR 2021). The repository focuses on correcting poorly exposed photographs, handling both underexposure and overexposure using a deep learning approach. The method employs a multi-scale framework that learns to enhance images by adjusting exposure levels across different spatial resolutions. This allows the model to preserve fine details while correcting...
    Downloads: 5 This Week
    Last Update:
    See Project
  • Yeastar: Business Phone System and Unified Communications Icon
    Yeastar: Business Phone System and Unified Communications

    Go beyond just a PBX with all communications integrated as one.

    User-friendly, optimized, and scalable, the Yeastar P-Series Phone System redefines business connectivity by bringing together calling, meetings, omnichannel messaging, and integrations in one simple platform—removing the limitations of distance, platforms, and systems.
    Learn More
  • 10
    Armadillo

    Armadillo

    fast C++ library for linear algebra & scientific computing

    * Fast C++ library for linear algebra (matrix maths) and scientific computing * Easy to use functions and syntax, deliberately similar to Matlab / Octave * Uses template meta-programming techniques to increase efficiency * Provides user-friendly wrappers for OpenBLAS, Intel MKL, LAPACK, ATLAS, ARPACK, SuperLU and FFTW libraries * Useful for machine learning, pattern recognition, signal processing, bioinformatics, statistics, finance, etc. * Downloads: http://arma.sourceforge.net/download.html * Documentation: http://arma.sourceforge.net/docs.html * Bug reports: http://arma.sourceforge.net/faq.html * Git repo: https://gitlab.com/conradsnicta/armadillo-code
    Leader badge
    Downloads: 2,384 This Week
    Last Update:
    See Project
  • 11
    CometAnalyser

    CometAnalyser

    CometAnalyser, for quantitative comet assay analysis.

    ...Once the comets are segmented and classified, several intensity/morphological features are automatically exported as a spreadsheet file. Video Tutorial: CometAnalyser is written in MATLAB. It works with Windows, Macintosh, and UNIX-based systems. Please, download the sample datasets and test it watching the video tutorial to understand how it works: https://www.youtube.com/watch?v=vh2VFnMw50A Contacts: filippo.piccinini85@gmail.com beleonattila@gmail.com
    Downloads: 11 This Week
    Last Update:
    See Project
  • 12
    mTRF-Toolbox

    mTRF-Toolbox

    A MATLAB package for modelling multivariate stimulus-response data

    mTRF-Toolbox is a MATLAB package for modelling multivariate stimulus-response data, suitable for neurophysiological data such as MEG, EEG, sEEG, ECoG and EMG. It can be used to model the functional relationship between neuronal populations and dynamic sensory inputs such as natural scenes and sounds, or build neural decoders for reconstructing stimulus features and developing real-time applications such as brain-computer interfaces (BCIs).
    Downloads: 11 This Week
    Last Update:
    See Project
  • 13
    Eventer

    Eventer

    Rapid, unbiased, reproducible analysis of synaptic events

    ...Eventer also includes a machine learning-based approach allowing users to train a model to implement their ‘expert’ selection criteria across data sets without bias. Sharing models allows users to implement consistent analysis procedures. The software is coded in MATLAB, but has been compiled as standalone applications for Windows, Mac and Linux. Please visit the official Eventer website for more info https://eventerneuro.netlify.app/ While the paper is in preparation, please cite as; Winchester, G., Liu, S., Steele, O.G., Aziz, W. and Penn, A.C. (2020) Eventer. Software for the detection of spontaneous synaptic events measured by electrophysiology or imaging. http://doi.org/10.5281/zenodo.3991676
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    SmartWeld

    SmartWeld

    Weld Optimization for Automatic Welding

    Science based weld software to develop optimal automatic weld procedures. SmartWeld is a PC based tool for designers, engineers, and technicians to aid in selecting, optimizing, and configuring automated welding processes.
    Leader badge
    Downloads: 9 This Week
    Last Update:
    See Project
  • 15
    dlib C++ Library
    Dlib is a C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real world problems.
    Leader badge
    Downloads: 87 This Week
    Last Update:
    See Project
  • 16
    Bandicoot

    Bandicoot

    fast C++ library for GPU linear algebra & scientific computing

    * Fast GPU linear algebra library (matrix maths) for the C++ language, aiming towards a good balance between speed and ease of use * Provides high-level syntax and functionality deliberately similar to Matlab * Provides an API that is aiming to be compatible with Armadillo for easy transition between CPU and GPU linear algebra code * Useful for algorithm development directly in C++, or quick conversion of research code into production environments * Distributed under the permissive Apache 2.0 license, useful for both open-source and proprietary (closed-source) software * Can be used for machine learning, pattern recognition, computer vision, signal processing, bioinformatics, statistics, finance, etc * Downloads: http://coot.sourceforge.io/download.html * Documentation: http://coot.sourceforge.io/docs.html * Bug reports: http://coot.sourceforge.io/faq.html * Git repo: https://gitlab.com/conradsnicta/bandicoot-code
    Downloads: 7 This Week
    Last Update:
    See Project
  • 17
    A mostly MATLAB-compatible fuzzy logic toolkit for Octave. A complete function reference is located here: https://lmarkowsky.github.io/fuzzy-logic-toolkit/, and the official Octave documentation is here: https://www.octave.org/support If the function reference and Octave documentation do not address your questions or if you have comments, contact me at lmarkov@users.sourceforge.net.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18
    Source code from the Research Institute for Signals, Systems and Computational Intelligence http://fich.unl.edu.ar/sinc
    Leader badge
    Downloads: 12 This Week
    Last Update:
    See Project
  • 19
    tdsft

    tdsft

    TDSFT (Two-Dimensional Segmentation Fusion Tool)

    ...Numerous algorithms have been developed over time, but to date, there is no validated method for this procedure. Therefore, research is still active in this area. Two-Dimensional Segmentation Fusion Tool (TDSFT) is an open-source tool developed in MATLAB and distributed as a standalone application for MAC, Linux, and Windows, which offers a simple and extensible interface where numerous algorithms are proposed to "mediate" (e.g., process and fuse) multiple segmentations. TDSFT is a tool made with ease of use as a fixed point, to support and help medical specialists during their work. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    MTCNN Face Detection Alignment

    MTCNN Face Detection Alignment

    Joint Face Detection and Alignment

    ...The algorithm uses a cascade of three convolutional networks (P-Net, R-Net, O-Net) to jointly detect faces (bounding boxes) and align facial landmarks in a coarse-to-fine manner, leveraging multi-task learning. Non-maximum suppression and bounding box regression at each stage. The repository includes Caffe / MATLAB code, support scripts, and instructions for dependencies. Non-maximum suppression and bounding box regression at each stage. Online hard sample mining to improve training robustness.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Spheroid_segmentation

    Spheroid_segmentation

    Deep learning networks for spheroid segmentation

    To accelerate the analysis of tumors' spheroids, different deep learning networks were trained to automatize the segmentation process. The code provides the trained networks based on Vgg16, Vgg19, ResNet18, and ResNet50 ready to be used for segmentation purposes. It also provides Matlab functions ready to be used to train new networks, segment new images, and measure the quality of the training using different quantitative parameters.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Apache MXNet (incubating)

    Apache MXNet (incubating)

    A flexible and efficient library for deep learning

    Apache MXNet is an open source deep learning framework designed for efficient and flexible research prototyping and production. It contains a dynamic dependency scheduler that automatically parallelizes both symbolic and imperative operations. On top of this is a graph optimization layer, overall making MXNet highly efficient yet still portable, lightweight and scalable.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    DnCNN

    DnCNN

    Beyond a Gaussian Denoiser: Residual Learning of Deep CNN

    ...This formulation allows efficient denoising, supports blind Gaussian noise (i.e. unknown noise levels), and can be extended to related tasks like image super-resolution or JPEG deblocking in some variants. The repository includes training code (using MatConvNet / MATLAB), demo scripts, pretrained models, and evaluation routines. Single model handling multiple noise levels.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 24
    VRN

    VRN

    Code for "Large Pose 3D Face Reconstruction

    ...Instead of explicitly fitting a 3D model via landmark estimation and deformation, VRN treats the reconstruction task as volumetric segmentation: it learns a CNN to regress a 3D volume aligned to the input image, and then extracts a mesh via isosurface from that volume. The network is unguided (no 2D landmarks as intermediate). The mesh surfaces can be textured (in MATLAB branch) and colored. Docker container provided for easy CPU deployment.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 25
    CAM

    CAM

    Class Activation Mapping

    This repository implements Class Activation Mapping (CAM), a technique to expose the implicit attention of convolutional neural networks by generating heatmaps that highlight the most discriminative image regions influencing a network’s class prediction. The method involves modifying a CNN model slightly (e.g., using global average pooling before the final layer) to produce a weighted combination of feature maps as the class activation map. Integration with existing CNNs (with light...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • 5
  • Next