Showing 128 open source projects for "python feature selection"

View related business solutions
  • Crowdtesting That Delivers | Testeum Icon
    Crowdtesting That Delivers | Testeum

    Unfixed bugs delaying your launch? Test with real users globally – check it out for free, results in days.

    Testeum connects your software, app, or website to a worldwide network of testers, delivering detailed feedback in under 48 hours. Ensure functionality and refine UX on real devices, all at a fraction of traditional costs. Trusted by startups and enterprises alike, our platform streamlines quality assurance with actionable insights.
    Click to perfect your product now.
  • Test your software product anywhere in the world Icon
    Test your software product anywhere in the world

    Get feedback from real people across 190+ countries with the devices, environments, and payment instruments you need for your perfect test.

    Global App Testing is a managed pool of freelancers used by Google, Meta, Microsoft, and other world-beating software companies.
    Try us today.
  • 1

    audioFlux

    A library for audio and music analysis, feature extraction.

    audioflux is a deep learning tool library for audio and music analysis, feature extraction. It supports dozens of time-frequency analysis transformation methods and hundreds of corresponding time-domain and frequency-domain feature combinations. It can be provided to deep learning networks for training, and is used to study various tasks in the audio field such as Classification, Separation, Music Information Retrieval(MIR) and ASR etc.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    OmicSelector

    OmicSelector

    Feature selection and deep learning modeling for omic biomarker study

    OmicSelector is an environment, Docker-based web application, and R package for biomarker signature selection (feature selection) from high-throughput experiments and others. It was initially developed for miRNA-seq (small RNA, smRNA-seq; hence the name was miRNAselector), RNA-seq and qPCR, but can be applied for every problem where numeric features should be selected to counteract overfitting of the models. Using our tool, you can choose features, like miRNAs, with the most significant...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 3
    Deep learning time series forecasting

    Deep learning time series forecasting

    Deep learning PyTorch library for time series forecasting

    Example image Flow Forecast (FF) is an open-source deep learning for time series forecasting framework. It provides all the latest state-of-the-art models (transformers, attention models, GRUs) and cutting-edge concepts with easy-to-understand interpretability metrics, cloud provider integration, and model serving capabilities. Flow Forecast was the first time series framework to feature support for transformer-based models and remains the only true end-to-end deep learning for time series...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    RQ-Transformer

    RQ-Transformer

    Implementation of RQ Transformer, autoregressive image generation

    Implementation of RQ Transformer, which proposes a more efficient way of training multi-dimensional sequences autoregressively. This repository will only contain the transformer for now. You can use this vector quantization library for the residual VQ. This type of axial autoregressive transformer should be compatible with memcodes, proposed in NWT. It would likely also work well with multi-headed VQ. I also think there is something deeper going on, and have generalized this to any number of...
    Downloads: 0 This Week
    Last Update:
    See Project
  • No-Nonsense Code-to-Cloud Security for Devs | Aikido Icon
    No-Nonsense Code-to-Cloud Security for Devs | Aikido

    Connect your GitHub, GitLab, Bitbucket, or Azure DevOps account to start scanning your repos for free.

    Aikido provides a unified security platform for developers, combining 12 powerful scans like SAST, DAST, and CSPM. AI-driven AutoFix and AutoTriage streamline vulnerability management, while runtime protection blocks attacks.
    Start for Free
  • 5
    Hugging Face Transformer

    Hugging Face Transformer

    CPU/GPU inference server for Hugging Face transformer models

    Optimize and deploy in production Hugging Face Transformer models in a single command line. At Lefebvre Dalloz we run in-production semantic search engines in the legal domain, in the non-marketing language it's a re-ranker, and we based ours on Transformer. In that setup, latency is key to providing a good user experience, and relevancy inference is done online for hundreds of snippets per user query. Most tutorials on Transformer deployment in production are built over Pytorch and FastAPI....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Photonix Photo Manager

    Photonix Photo Manager

    A modern, web-based photo management server

    A modern, web-based photo management server. Run it on your home server and it will let you find the right photo from your collection on any device. Smart filtering is made possible by object recognition, face recognition, location awareness, color analysis and other ML algorithms. This project is currently in development and not feature complete for a version 1.0 yet. If you don't mind putting up with broken parts or want to help out, run the Docker image and give it a go. I'd love for other...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Paperless-ng

    Paperless-ng

    A supercharged version of paperless, scan, index and archive docs

    Paperless is a simple Django application running in two parts, a Consumer (the thing that does the indexing) and a Web server (the part that lets you search & download already-indexed documents). Paper is a nightmare. Environmental issues aside, there’s no excuse for it in the 21st century. It takes up space, collects dust, doesn’t support any form of a search feature, indexing is tedious, it’s heavy and prone to damage & loss. I wrote this to make “going paperless” easier. I do not have...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    ReinventCommunity

    ReinventCommunity

    Jupyter Notebook tutorials for REINVENT 3.2

    This repository is a collection of useful jupyter notebooks, code snippets and example JSON files illustrating the use of Reinvent 3.2.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Hands-on Unsupervised Learning

    Hands-on Unsupervised Learning

    Code for Hands-on Unsupervised Learning Using Python (O'Reilly Media)

    This repo contains the code for the O'Reilly Media, Inc. book "Hands-on Unsupervised Learning Using Python: How to Build Applied Machine Learning Solutions from Unlabeled Data" by Ankur A. Patel. Many industry experts consider unsupervised learning the next frontier in artificial intelligence, one that may hold the key to the holy grail in AI research, the so-called general artificial intelligence. Since the majority of the world's data is unlabeled, conventional supervised learning cannot...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Secure remote access solution to your private network, in the cloud or on-prem. Icon
    Secure remote access solution to your private network, in the cloud or on-prem.

    Deliver secure remote access with OpenVPN.

    OpenVPN is here to bring simple, flexible, and cost-effective secure remote access to companies of all sizes, regardless of where their resources are located.
    Get started — no credit card required.
  • 10
    Self-Attentive Parser

    Self-Attentive Parser

    High-accuracy NLP parser with models for 11 languages

    LightAutoML is an automated machine learning (AutoML) framework developed by Sberbank AI Lab, designed to facilitate the development of machine learning models with minimal human intervention.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Awesome Graph Classification

    Awesome Graph Classification

    Graph embedding, classification and representation learning papers

    A collection of graph classification methods, covering embedding, deep learning, graph kernel and factorization papers with reference implementations. Relevant graph classification benchmark datasets are available. Similar collections about community detection, classification/regression tree, fraud detection, Monte Carlo tree search, and gradient boosting papers with implementations.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Amazon SageMaker Examples

    Amazon SageMaker Examples

    Jupyter notebooks that demonstrate how to build models using SageMaker

    Welcome to Amazon SageMaker. This projects highlights example Jupyter notebooks for a variety of machine learning use cases that you can run in SageMaker. If you’re new to SageMaker we recommend starting with more feature-rich SageMaker Studio. It uses the familiar JupyterLab interface and has seamless integration with a variety of deep learning and data science environments and scalable compute resources for training, inference, and other ML operations. Studio offers teams and companies easy...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 13
    DeText

    DeText

    A Deep Neural Text Understanding Framework

    DeText is a Deep Text understanding framework for NLP-related ranking, classification, and language generation tasks. It leverages semantic matching using deep neural networks to understand member intents in search and recommender systems. As a general NLP framework, DeText can be applied to many tasks, including search & recommendation ranking, multi-class classification and query understanding tasks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Magnitude

    Magnitude

    A fast, efficient universal vector embedding utility package

    A feature-packed Python package and vector storage file format for utilizing vector embeddings in machine learning models in a fast, efficient, and simple manner developed by Plasticity. It is primarily intended to be a simpler / faster alternative to Gensim but can be used as a generic key-vector store for domains outside NLP. It offers unique features like out-of-vocabulary lookups and streaming of large models over HTTP. Published in our paper at EMNLP 2018 and available on arXiv.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    TensorNets

    TensorNets

    High level network definitions with pre-trained weights in TensorFlow

    ...-point. Also, it is easy to deploy and expand a collection of pre-processing and pre-trained weights. Readability. With recent TensorFlow APIs, more factoring and less indenting can be possible. For example, all the inception variants are implemented as about 500 lines of code in TensorNets while 2000+ lines in official TensorFlow models. Reproducibility. You can always reproduce the original results with simple APIs including feature extractions.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Linux-Intelligent-Ocr-Solution

    Linux-Intelligent-Ocr-Solution

    Easy-OCR solution and Tesseract trainer for GNU/Linux

    Linux-intelligent-ocr-solution Lios is a free and open source software for converting print in to text using either scanner or a camera, It can also produce text out of scanned images from other sources such as Pdf, Image, Folder containing Images or screenshot. Program is given total accessibility for visually impaired. A Tesseract Trainer GUI is also shipped with this package. Forum : https://groups.google.com/forum/#!forum/lios Video Tutorial :...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 17
    Image Super-Resolution (ISR)

    Image Super-Resolution (ISR)

    Super-scale your images and run experiments with Residual Dense

    ... commands. When training your own model, start with only PSNR loss (50+ epochs, depending on the dataset) and only then introduce GANS and feature loss. This can be controlled by the loss weights argument. The weights used to produce these images are available directly when creating the model object. ISR is compatible with Python 3.6 and is distributed under the Apache 2.0 license.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 18
    PyTracking

    PyTracking

    Visual tracking library based on PyTorch

    A general python framework for visual object tracking and video object segmentation, based on PyTorch. Official implementation of the RTS (ECCV 2022), ToMP (CVPR 2022), KeepTrack (ICCV 2021), LWL (ECCV 2020), KYS (ECCV 2020), PrDiMP (CVPR 2020), DiMP (ICCV 2019), and ATOM (CVPR 2019) trackers, including complete training code and trained models.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Jarvis

    Jarvis

    Personal Assistant for Linux and macOS

    Jarvis is a simple personal assistant for Linux, MacOS and Windows which works on the command line. He can talk to you if you enable his voice. He can tell you the weather, he can find restaurants and other places near you. He can do some great stuff for you. In order to start Jarvis just clone this repository and run python installer. Run Jarvis from anywhere by command jarvis. You can start by typing help within the Jarvis command line to check what Jarvis can do for you. Plugins may...
    Downloads: 323 This Week
    Last Update:
    See Project
  • 20

    EBCS for Feature Selection

    Enhanced Binary Cuckoo Search with Frequent Values and RST (EBCS)

    This Filter Feature Selection approach (EBCS) with other tasks developed by PHP Programing language. Initial parameters for EBCS and FS-BCS as follows: Maximum number of iteration is 20. Population size is 20. Probability (P) is 0.25. Alpha is 0.1. After Downloading and copying the EBCS directory to directory root, and request the EBCS/index.php page to show home page which contains the following tasks: 1. The new Approach: EBCS. 2. The baseline approach: FS-BCS. 3. Enhanced...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Torchreid

    Torchreid

    Deep learning person re-identification in PyTorch

    Torchreid is a library for deep-learning person re-identification, written in PyTorch and developed for our ICCV’19 project, Omni-Scale Feature Learning for Person Re-Identification. In "deep-person-reid/scripts/", we provide a unified interface to train and test a model. See "scripts/main.py" and "scripts/default_config.py" for more details. The folder "configs/" contains some predefined configs which you can use as a starting point. The code will automatically (download and) load the ImageNet...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    MLBox

    MLBox

    MLBox is a powerful Automated Machine Learning python library

    MLBox is a powerful Automated Machine Learning python library. Fast reading and distributed data preprocessing/cleaning/formatting. Highly robust feature selection and leak detection. Accurate hyper-parameter optimization in high-dimensional space. State-of-the-art predictive models for classification and regression (Deep Learning, Stacking, LightGBM,...) Prediction with model interpretation. MLBox has been developed and used by many active community members. Your help is very valuable to make...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    RoboSat

    RoboSat

    Semantic segmentation on aerial and satellite imagery

    RoboSat is an end-to-end pipeline written in Python 3 for feature extraction from aerial and satellite imagery. Features can be anything visually distinguishable in the imagery for example: buildings, parking lots, roads, or cars.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    FID score for PyTorch

    FID score for PyTorch

    Compute FID scores with PyTorch

    This is a port of the official implementation of Fréchet Inception Distance to PyTorch. FID is a measure of similarity between two datasets of images. It was shown to correlate well with human judgement of visual quality and is most often used to evaluate the quality of samples of Generative Adversarial Networks. FID is calculated by computing the Fréchet distance between two Gaussians fitted to feature representations of the Inception network. The weights and the model are exactly the same...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 25
    xLearn

    xLearn

    High performance, easy-to-use, and scalable machine learning (ML)

    xLearn is a high-performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM), all of which can be used to solve large-scale machine learning problems. xLearn is especially useful for solving machine learning problems on large-scale sparse data. Many real-world datasets deal with high dimensional sparse feature vectors like a recommendation system where the number of categories...
    Downloads: 0 This Week
    Last Update:
    See Project
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.