Showing 69 open source projects for "optimize"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Outgrown Windows Task Scheduler? Icon
    Outgrown Windows Task Scheduler?

    Free diagnostic identifies where your workflow is breaking down—with instant analysis of your scheduling environment.

    Windows Task Scheduler wasn't built for complex, cross-platform automation. Get a free diagnostic that shows exactly where things are failing and provides remediation recommendations. Interactive HTML report delivered in minutes.
    Download Free Tool
  • 1
    Poker Bot AI

    Poker Bot AI

    Artificial Intelligence Poker Bot for popular apps on Android

    ... - Behavior algorithms that mimic human playing patterns, helping the bot blend into realistic gameplay environments. - Integrated use of opponent statistics (VPIP, AF, 3‑Bet, C‑Bet, PFR, etc.) to optimize strategy and adapt to pool tendencies. - Regular software updates and lifetime support ensure stability. Github: https://github.com/PokerBotAI
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    LightSeq

    LightSeq

    A High Performance Library for Sequence Processing and Generation

    Lightseq is a high-performance library focused on efficient inference and training for deep learning models, especially large language models (LLMs) and transformer-based architectures. Its goal is to optimize both memory usage and computational throughput, enabling faster training or inference on limited hardware while maintaining model quality. Lightseq provides optimized CUDA kernels, quantization strategies, and runtime optimizations tailored for transformer operations — which often are bottlenecks in conventional frameworks — thereby reducing memory footprint, improving speed, and making deployment of large-scale models more accessible. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    mlr

    mlr

    Machine Learning in R

    R does not define a standardized interface for its machine-learning algorithms. Therefore, for any non-trivial experiments, you need to write lengthy, tedious, and error-prone wrappers to call the different algorithms and unify their respective output. {mlr} provides this infrastructure so that you can focus on your experiments! The framework provides supervised methods like classification, regression, and survival analysis along with their corresponding evaluation and optimization methods,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    YOLOX

    YOLOX

    YOLOX is a high-performance anchor-free YOLO, exceeding yolov3~v5

    YOLOX is a high-performance anchor-free YOLO, exceeding yolov3~v5 with MegEngine, ONNX, TensorRT, ncnn, and OpenVINO supported. YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and industrial communities. Prepare your own dataset with images and labels first. For labeling images, you can use tools like Labelme or CVAT. One more thing worth noting is that you should also implement pull_item and load_anno method...
    Downloads: 16 This Week
    Last Update:
    See Project
  • AI-generated apps that pass security review Icon
    AI-generated apps that pass security review

    Stop waiting on engineering. Build production-ready internal tools with AI—on your company data, in your cloud.

    Retool lets you generate dashboards, admin panels, and workflows directly on your data. Type something like “Build me a revenue dashboard on my Stripe data” and get a working app with security, permissions, and compliance built in from day one. Whether on our cloud or self-hosted, create the internal software your team needs without compromising enterprise standards or control.
    Try Retool free
  • 5
    Scikit-Optimize

    Scikit-Optimize

    Sequential model-based optimization with a `scipy.optimize` interface

    Scikit-Optimize, or skopt, is a simple and efficient library to minimize (very) expensive and noisy black-box functions. It implements several methods for sequential model-based optimization. skopt aims to be accessible and easy to use in many contexts. The library is built on top of NumPy, SciPy and Scikit-Learn.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Deep Daze

    Deep Daze

    Simple command line tool for text to image generation

    Simple command-line tool for text to image generation using OpenAI's CLIP and Siren (Implicit neural representation network). In true deep learning fashion, more layers will yield better results. Default is at 16, but can be increased to 32 depending on your resources. Technique first devised and shared by Mario Klingemann, it allows you to prime the generator network with a starting image, before being steered towards the text. Simply specify the path to the image you wish to use, and...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    Hugging Face Transformer

    Hugging Face Transformer

    CPU/GPU inference server for Hugging Face transformer models

    Optimize and deploy in production Hugging Face Transformer models in a single command line. At Lefebvre Dalloz we run in-production semantic search engines in the legal domain, in the non-marketing language it's a re-ranker, and we based ours on Transformer. In that setup, latency is key to providing a good user experience, and relevancy inference is done online for hundreds of snippets per user query.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 8
    Algobot

    Algobot

    Cryptocurrency trading bot with a graphical user interface

    Cryptocurrency trading bot that allows users to create strategies and then backtest, optimize, simulate, or run live bots using them. Telegram integration has been added to support easier and remote trading. Please note that Algobot requires TA-LIB. You can view instructions on how to download TA-LIB. For Windows users, it's best to download the .whl package for your Python install and pip install it. For Linux and MacOS users, there's excellent documentation available.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 9
    Perceptual Similarity Metric and Dataset

    Perceptual Similarity Metric and Dataset

    LPIPS metric. pip install lpips

    While it is nearly effortless for humans to quickly assess the perceptual similarity between two images, the underlying processes are thought to be quite complex. Despite this, the most widely used perceptual metrics today, such as PSNR and SSIM, are simple, shallow functions, and fail to account for many nuances of human perception. Recently, the deep learning community has found that features of the VGG network trained on ImageNet classification has been remarkably useful as a training...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 10
    Gluon CV Toolkit

    Gluon CV Toolkit

    Gluon CV Toolkit

    ...From fundamental image classification, object detection, semantic segmentation and pose estimation, to instance segmentation and video action recognition. The model zoo is the one-stop shopping center for many models you are expecting. GluonCV embraces a flexible development pattern while is super easy to optimize and deploy without retaining a heavyweight deep learning framework.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    AdaNet

    AdaNet

    Fast and flexible AutoML with learning guarantees

    AdaNet is a TensorFlow framework for fast and flexible AutoML with learning guarantees. AdaNet is a lightweight TensorFlow-based framework for automatically learning high-quality models with minimal expert intervention. AdaNet builds on recent AutoML efforts to be fast and flexible while providing learning guarantees. Importantly, AdaNet provides a general framework for not only learning a neural network architecture but also for learning to the ensemble to obtain even better models. At each...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    SINGA

    SINGA

    A distributed deep learning platform

    Apache SINGA is an Apache Top Level Project, focusing on distributed training of deep learning and machine learning models. Various example deep learning models are provided in SINGA repo on Github and on Google Colab. SINGA supports data parallel training across multiple GPUs (on a single node or across different nodes). SINGA supports various popular optimizers including stochastic gradient descent with momentum, Adam, RMSProp, and AdaGrad, etc. SINGA records the computation graph and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    NOMAD is a C++ code that implements the MADS algorithm (Mesh Adaptive Direct Search) for difficult blackbox optimization problems. Such problems occur when the functions to optimize are costly computer simulations with no derivatives.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    NNVM

    NNVM

    Open deep learning compiler stack for cpu, gpu

    The vision of the Apache NNVM Project is to host a diverse community of experts and practitioners in machine learning, compilers, and systems architecture to build an accessible, extensible, and automated open-source framework that optimizes current and emerging machine learning models for any hardware platform. Compilation of deep learning models into minimum deployable modules. Infrastructure to automatically generates and optimize models on more backend with better performance. Compilation and minimal runtimes commonly unlock ML workloads on existing hardware. Automatically generate and optimize tensor operators on more backends. Need support for block sparsity, quantization (1,2,4,8 bit integers, posit), random forests/classical ML, memory planning, MISRA-C compatibility, Python prototyping or all of the above? ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    DoAllWithPDF_servicemenu

    DoAllWithPDF_servicemenu

    KDE servicemenu for pdf

    allows kde user to make a lot of things whit right click on a pdf file.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 16
    X-GAT
    X-GAT (XML-based Genetic Algorithm Toolkit) is a Java framework to optimize problems with Genetic Algorithms (GAs). Differently from other frameworks, X-GAT contains ready-to-use GAs implementations and new features can be easily added.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Cambrian is a set of optimizing libraries design to optimize multi and mono objective functions. Cambrian is extension of Genetikos application developed to use genetic algorithms.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    The Athlete is a virtual robot living in the ODE (Open Dynamics Engine)world. An evolution algorithm is implemented based on the DR-EA-M to optimize its performances. This involves a Genetic algorithm, network of neurons and morphology. All is in java.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Jan-v1-edge

    Jan-v1-edge

    Jan-v1-edge: efficient 1.7B reasoning model optimized for edge devices

    ...The model was refined through a two-stage post-training process: Supervised Fine-Tuning (SFT) to transfer knowledge from Jan-v1, followed by Reinforcement Learning with Verifiable Rewards (RLVR) to optimize reasoning, tool use, and correctness. With just 1.7B parameters, Jan-v1-edge achieves 83% accuracy on SimpleQA tasks, approaching the performance of larger models like Jan-nano-128k. Benchmark comparisons show it remains competitive or superior in areas such as EQBench and recency QA, though with slight trade-offs in instruction following and creative writing compared to similar-sized Qwen models.
    Downloads: 0 This Week
    Last Update:
    See Project