Showing 62 open source projects for "gpu processing"

View related business solutions
  • Context for your AI agents Icon
    Context for your AI agents

    Crawl websites, sync to vector databases, and power RAG applications. Pre-built integrations for LLM pipelines and AI assistants.

    Build data pipelines that feed your AI models and agents without managing infrastructure. Crawl any website, transform content, and push directly to your preferred vector store. Use 10,000+ tools for RAG applications, AI assistants, and real-time knowledge bases. Monitor site changes, trigger workflows on new data, and keep your AIs fed with fresh, structured information. Cloud-native, API-first, and free to start until you need to scale.
    Try for free
  • Dominate AI Search Results Icon
    Dominate AI Search Results

    Generative Al is shaping brand discovery. AthenaHQ ensures your brand leads the conversation.

    AthenaHQ is a cutting-edge platform for Generative Engine Optimization (GEO), designed to help brands optimize their visibility and performance across AI-driven search platforms like ChatGPT, Google AI, and more.
    Learn More
  • 1
    Bender

    Bender

    Easily craft fast Neural Networks on iOS

    ...With Core ML, you can integrate trained machine learning models into your app, it supports Caffe and Keras 1.2.2+ at the moment. Apple released conversion tools to create CoreML models which then can be run easily. Finally, there is no easy way to add additional pre or post-processing layers to run on the GPU.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Caffe

    Caffe

    A fast open framework for deep learning

    ...It’s got an expressive architecture that encourages application and innovation, and extensible code that’s great for active development. Caffe also offers great speed, capable of processing over 60M images per day with a single NVIDIA K40 GPU. It’s arguably one of the fastest convnet implementations around. Caffe is developed by the Berkeley AI Research (BAIR)/The Berkeley Vision and Learning Center (BVLC) and a great community of contributors that continue to make Caffe state-of-the-art in both code and models. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Scene
    Scene is a computer vision framework that performs background subtraction and object tracking, using two traditional algorithms and three more recent algorithms based on neural networks and fuzzy classification rules. For each detected object, Scene sends TUIO messages to one or several client applications. The present release features GPU accelerated versions of all the background subtraction methods and morphological post processing of the object blobs with dilation and erosion filters, implemented in OpenCL. The framework was mainly designed as a toolkit for the rapid development of interactive art projects that explore dynamics of complex environments. The Scene GUI runs and compiles under Windows, Linux, and MacOS X, and is available in both 32 bit and 64 bit versions.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4

    Accelerated Feature Extraction Tool

    A fast GPU accelerated feature extraction software for speech analysis

    A fast feature extraction software tool for speech analysis and processing. It incorporates standard MFCC, PLP, and TRAPS features. The tool is a specially designed to process very large audio data sets. It uses GPU acceleration if compatible GPU available (CUDA as weel as OpenCL, NVIDIA, AMD, and Intel GPUs are supported). CPU SSE intrinsic instruction set is used in cases where no compatible GPU present.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Deliver trusted data with dbt Icon
    Deliver trusted data with dbt

    dbt Labs empowers data teams to build reliable, governed data pipelines—accelerating analytics and AI initiatives with speed and confidence.

    Data teams use dbt to codify business logic and make it accessible to the entire organization—for use in reporting, ML modeling, and operational workflows.
    Learn More
  • 5

    LBP in multiple platforms

    LBP implementation in multiple computing platforms (ARM,GPU, DSP...)

    ...When selecting a suitable LBP implementation platform, the specific application and its requirements in terms of performance, size, energy efficiency, cost and developing time has to be carefully considered. This is a software toolbox that collects software implementations of the Local Binary Pattern operator in several platforms: - OpenCL for CPU & GPU - OpenCL for GPU (branchless) - C code optimized for ARM - OpenGL ES 2.0 shaders mobile GPUs - C code for TI C64x DSP core (branchless) - C code for TTA processor synthesis If you use the code somewhere, please cite: Bordallo López M., Nieto A., Boutellier J., Hannuksela J., and Silvén O. "Evaluation of real-time LBP computing in multiple architectures," Journal of Real Time Image Processing, 2014
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    proGPUKLT is a library for the Processing programming language and environment that wraps a GPU-implementation of the Kanade-Lucas-Tomasi feature tracker used for computer vision applications.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    This project uses massively parallel Graphics Processing Units(GPU) for neural network(Backpropagation) purposes.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    GPUVision is a framework for creating GPU based general purpose programs, image processing programs, and computer vision programs in C++. Supported libraries include matrix operations, graph partitioning, kernels, corner detection, edge detection etc.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    mms-300m-1130-forced-aligner

    mms-300m-1130-forced-aligner

    CTC-based forced aligner for audio-text in 158 languages

    ...Unlike other tools, it provides significant memory efficiency compared to the TorchAudio forced alignment API. Users can integrate it easily through the Python package ctc-forced-aligner, and it supports GPU acceleration via PyTorch. The alignment pipeline includes audio processing, emission generation, tokenization, and span detection, making it suitable for speech analysis, transcription syncing, and dataset creation. This model is especially useful for researchers and developers working with low-resource languages or building multilingual speech systems.
    Downloads: 0 This Week
    Last Update:
    See Project
  • HOA Software Icon
    HOA Software

    Smarter Community Management Starts Here

    Simplify HOA management with software that handles everything from financials to communication.
    Learn More
  • 10
    Ministral 3 8B Instruct 2512

    Ministral 3 8B Instruct 2512

    Compact 8B multimodal instruct model optimized for edge deployment

    Ministral 3 8B Instruct 2512 is a balanced, efficient model in the Ministral 3 family, offering strong multimodal capabilities within a compact footprint. It combines an 8.4B-parameter language model with a 0.4B vision encoder, enabling both text reasoning and image understanding. This FP8 instruct-fine-tuned variant is optimized for chat, instruction following, and structured outputs, making it ideal for daily assistant tasks and lightweight agentic workflows. Designed for edge deployment,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Ministral 3 3B Base 2512

    Ministral 3 3B Base 2512

    Small 3B-base multimodal model ideal for custom AI on edge hardware

    ...As the base pretrained model, it is not fine-tuned for instructions or reasoning, making it the ideal foundation for custom post-training, domain adaptation, or specialized downstream tasks. The model is fully optimized for edge deployment and can run locally on a single GPU, fitting in 16GB VRAM in BF16 or less than 8GB when quantized. It supports dozens of languages, making it practical for multilingual, global, or distributed environments. With a large 256k token context window, it can handle long documents, extended inputs, or multi-step processing workflows even at its small size.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Ministral 3 14B Instruct 2512

    Ministral 3 14B Instruct 2512

    Efficient 14B multimodal instruct model with edge deployment and FP8

    Ministral 3 14B Instruct 2512 is the largest model in the Ministral 3 family, delivering frontier performance comparable to much larger systems while remaining optimized for edge-level deployment. It combines a 13.5B-parameter language model with a 0.4B-parameter vision encoder, enabling strong multimodal understanding in both text and image tasks. This FP8 instruct-tuned variant is designed specifically for chat, instruction following, and agentic workflows with robust system-prompt...
    Downloads: 0 This Week
    Last Update:
    See Project