...The project focuses on making HanLP’s capabilities accessible through a Python-friendly API surface, so you can integrate NLP steps into data pipelines, notebooks, and downstream ML or information-extraction code. In practice, it serves as a bridge layer: Python calls are translated into the corresponding HanLP operations, so you can keep your application logic in Python while relying on HanLP’s implementations. It is especially useful when you need a pragmatic “get results quickly” NLP layer for segmentation, tagging, entity extraction, parsing, or keyword-style tasks rather than experimenting with model training from scratch.