Showing 2 open source projects for "ml-so1v"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Cloud tools for web scraping and data extraction Icon
    Cloud tools for web scraping and data extraction

    Deploy pre-built tools that crawl websites, extract structured data, and feed your applications. Reliable web data without maintaining scrapers.

    Automate web data collection with cloud tools that handle anti-bot measures, browser rendering, and data transformation out of the box. Extract content from any website, push to vector databases for RAG workflows, or pipe directly into your apps via API. Schedule runs, set up webhooks, and connect to your existing stack. Free tier available, then scale as you need to.
    Explore 10,000+ tools
  • 1
    The Algorithms Python

    The Algorithms Python

    All Algorithms implemented in Python

    The Algorithms-Python project is a comprehensive collection of Python implementations for a wide range of algorithms and data structures. It serves primarily as an educational resource for learners and developers who want to understand how algorithms work under the hood. Each implementation is designed with clarity in mind, favoring readability and comprehension over performance optimization. The project covers various domains including mathematics, cryptography, machine learning, sorting,...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 2
    pyhanlp

    pyhanlp

    Chinese participle

    ...The project focuses on making HanLP’s capabilities accessible through a Python-friendly API surface, so you can integrate NLP steps into data pipelines, notebooks, and downstream ML or information-extraction code. In practice, it serves as a bridge layer: Python calls are translated into the corresponding HanLP operations, so you can keep your application logic in Python while relying on HanLP’s implementations. It is especially useful when you need a pragmatic “get results quickly” NLP layer for segmentation, tagging, entity extraction, parsing, or keyword-style tasks rather than experimenting with model training from scratch.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next