Showing 28 open source projects for "machine learning python"

View related business solutions
  • Say goodbye to broken revenue funnels and poor customer experiences Icon
    Say goodbye to broken revenue funnels and poor customer experiences

    Connect and coordinate your data, signals, tools, and people at every step of the customer journey.

    LeanData is a Demand Management solution that supports all go-to-market strategies such as account-based sales development, geo-based territories, and more. LeanData features a visual, intuitive workflow native to Salesforce that enables users to view their entire lead flow in one interface. LeanData allows users to access the drag-and-drop feature to route their leads. LeanData also features an algorithms match that uses multiple fields in Salesforce.
    Learn More
  • Powerful cloud-based licensing solution designed for fast-growing software businesses. Icon
    Powerful cloud-based licensing solution designed for fast-growing software businesses.

    A single-point of license control for desktop, SaaS, and mobile applications, APIs, VMs and devices.

    10Duke Enterprise is a cloud-based, scalable and flexible software licensing solution enabling software vendors to easily configure, manage and monetize the licenses they provide to their customers in real-time.
    Learn More
  • 1
    The Algorithms Python

    The Algorithms Python

    All Algorithms implemented in Python

    ...The project covers various domains including mathematics, cryptography, machine learning, sorting, graph theory, and more. With contributions from a large global community, it continually grows and improves through collaboration and peer review. This repository is an ideal reference for students, educators, and developers seeking hands-on experience with algorithmic concepts in Python.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 2
    Python Outlier Detection

    Python Outlier Detection

    A Python toolbox for scalable outlier detection

    PyOD is a comprehensive and scalable Python toolkit for detecting outlying objects in multivariate data. This exciting yet challenging field is commonly referred as outlier detection or anomaly detection. PyOD includes more than 30 detection algorithms, from classical LOF (SIGMOD 2000) to the latest COPOD (ICDM 2020) and SUOD (MLSys 2021). Since 2017, PyOD [AZNL19] has been successfully used in numerous academic researches and commercial products [AZHC+21, AZNHL19]. PyOD has multiple neural...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    FATE

    FATE

    An industrial grade federated learning framework

    FATE (Federated AI Technology Enabler) is the world's first industrial grade federated learning open source framework to enable enterprises and institutions to collaborate on data while protecting data security and privacy. It implements secure computation protocols based on homomorphic encryption and multi-party computation (MPC). Supporting various federated learning scenarios, FATE now provides a host of federated learning algorithms, including logistic regression, tree-based algorithms,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    X's Recommendation Algorithm

    X's Recommendation Algorithm

    Source code for the X Recommendation Algorithm

    ...While certain components (such as safety layers, spam detection, or private data) are excluded, the release provides valuable insights into the design of real-world machine learning–driven ranking systems. The project is intended as a reference for researchers, developers, and the public to study, experiment with, and better understand the mechanisms behind social media content.
    Downloads: 1 This Week
    Last Update:
    See Project
  • AI-First Supply Chain Management Icon
    AI-First Supply Chain Management

    Supply chain managers, executives, and businesses seeking AI-powered solutions to optimize planning, operations, and decision-making across the supply

    Logility is a market-leading provider of AI-first supply chain management solutions engineered to help organizations build sustainable digital supply chains that improve people’s lives and the world we live in. The company’s approach is designed to reimagine supply chain planning by shifting away from traditional “what happened” processes to an AI-driven strategy that combines the power of humans and machines to predict and be ready for what’s coming. Logility’s fully integrated, end-to-end platform helps clients know faster, turn uncertainty into opportunity, and transform the supply chain from a cost center to an engine for growth.
    Learn More
  • 5
    AStro inFER - a rule miner and executer
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    MLPACK is a C++ machine learning library with emphasis on scalability, speed, and ease-of-use. Its aim is to make machine learning possible for novice users by means of a simple, consistent API, while simultaneously exploiting C++ language features to provide maximum performance and flexibility for expert users. * More info + downloads: https://mlpack.org * Git repo: https://github.com/mlpack/mlpack
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Gym

    Gym

    Toolkit for developing and comparing reinforcement learning algorithms

    Gym by OpenAI is a toolkit for developing and comparing reinforcement learning algorithms. It supports teaching agents, everything from walking to playing games like Pong or Pinball. Open source interface to reinforce learning tasks. The gym library provides an easy-to-use suite of reinforcement learning tasks. Gym provides the environment, you provide the algorithm. You can write your agent using your existing numerical computation library, such as TensorFlow or Theano. It makes no...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    GFPGAN

    GFPGAN

    GFPGAN aims at developing Practical Algorithms

    GFPGAN aims at developing Practical Algorithms for Real-world Face Restoration. Colab Demo for GFPGAN; (Another Colab Demo for the original paper model) Online demo: Huggingface (return only the cropped face) Online demo: Replicate.ai (may need to sign in, return the whole image). Online demo: Baseten.co (backed by GPU, returns the whole image). We provide a clean version of GFPGAN, which can run without CUDA extensions. So that it can run in Windows or on CPU mode. GFPGAN aims at developing...
    Downloads: 55 This Week
    Last Update:
    See Project
  • 9
    AlphaTensor

    AlphaTensor

    AI discovers faster, efficient algorithms for matrix multiplication

    ...Users can explore AlphaTensor’s discovered algorithms interactively using Colab notebooks or Python scripts.
    Downloads: 4 This Week
    Last Update:
    See Project
  • Cloud data warehouse to power your data-driven innovation Icon
    Cloud data warehouse to power your data-driven innovation

    BigQuery is a serverless and cost-effective enterprise data warehouse that works across clouds and scales with your data.

    BigQuery Studio provides a single, unified interface for all data practitioners of various coding skills to simplify analytics workflows from data ingestion and preparation to data exploration and visualization to ML model creation and use. It also allows you to use simple SQL to access Vertex AI foundational models directly inside BigQuery for text processing tasks, such as sentiment analysis, entity extraction, and many more without having to deal with specialized models.
    Try for free
  • 10
    Detectron2

    Detectron2

    Next-generation platform for object detection and segmentation

    Detectron2 is Facebook AI Research's next generation software system that implements state-of-the-art object detection algorithms. It is a ground-up rewrite of the previous version, Detectron, and it originates from maskrcnn-benchmark. It is powered by the PyTorch deep learning framework. Includes more features such as panoptic segmentation, Densepose, Cascade R-CNN, rotated bounding boxes, PointRend, DeepLab, etc. Can be used as a library to support different projects on top of it. We'll...
    Downloads: 9 This Week
    Last Update:
    See Project
  • 11
    Consistent Depth

    Consistent Depth

    We estimate dense, flicker-free, geometrically consistent depth

    Consistent Depth is a research project developed by Facebook Research that presents an algorithm for reconstructing dense and geometrically consistent depth information for all pixels in a monocular video. The system builds upon traditional structure-from-motion (SfM) techniques to provide geometric constraints while integrating a convolutional neural network trained for single-image depth estimation. During inference, the model fine-tunes itself to align with the geometric constraints of a...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 12
    interactive-coding-challenges

    interactive-coding-challenges

    120+ interactive Python coding interview challenges

    Interactive Coding Challenges is a collection of practice problems designed to strengthen data structures, algorithms, and problem-solving skills. The repository emphasizes a learn-by-doing approach: you read a prompt, attempt a solution, and verify behavior with tests, often within notebooks or scripts. Problems span arrays, strings, stacks, queues, linked lists, trees, graphs, dynamic programming, and more, mirroring common interview themes. Many challenges include hints and reference...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    MADDPG

    MADDPG

    Code for the MADDPG algorithm from a paper

    MADDPG (Multi-Agent Deep Deterministic Policy Gradient) is the official code release from OpenAI’s paper Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments. The repository implements a multi-agent reinforcement learning algorithm that extends DDPG to scenarios where multiple agents interact in shared environments. Each agent has its own policy, but training uses centralized critics conditioned on the observations and actions of all agents, enabling learning in...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 14
    Baselines

    Baselines

    High-quality implementations of reinforcement learning algorithms

    Unlike the other two, openai/baselines is not currently a maintained or prominent repo in the OpenAI organization (and I found no strong reference in OpenAI’s main GitHub). Historically, “baselines” repositories are often used for baseline implementations of reinforcement learning algorithms or reference models (e.g. in the RL domain). If there was an OpenAI “baselines” repo, it might have contained reference implementations for reinforcement learning or model policy baselines to compare new...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Coach

    Coach

    Enables easy experimentation with state of the art algorithms

    ...Coach collects statistics from the training process and supports advanced visualization techniques for debugging the agent being trained. Coach supports many state-of-the-art reinforcement learning algorithms, which are separated into three main classes - value optimization, policy optimization, and imitation learning. Coach supports a large number of environments which can be solved using reinforcement learning.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Active Learning

    Active Learning

    Framework and examples for active learning with machine learning model

    Active Learning is a Python-based research framework developed by Google for experimenting with and benchmarking various active learning algorithms. It provides modular tools for running reproducible experiments across different datasets, sampling strategies, and machine learning models. The system allows researchers to study how models can improve labeling efficiency by selectively querying the most informative data points rather than relying on uniformly sampled training sets. ...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 17
    Data Algorithm/leetcode/lintcode

    Data Algorithm/leetcode/lintcode

    Data Structure and Algorithm notes

    This work is some notes of learning and practicing data structures and algorithms. Part I is a brief introduction of basic data structures and algorithms, such as, linked lists, stack, queues, trees, sorting and etc. This book notes about learning data structure and algorithms. It was written in Simplified Chinese but other languages such as English and Traditional Chinese are also working in progress.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Pygorithm

    Pygorithm

    A Python module for learning all major algorithms

    A Python module to learn all the major algorithms on the go! Purely for educational purposes. If you are using Python 2.7 use pip instead. Depending on your permissions, you might need to use pip install, user pygorithm to install. To see all the available functions in a module, you can just type help() with the module name as an argument.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Algorithms in Python

    Algorithms in Python

    Data Structures and Algorithms in Python

    Algorithms in Python is a collection of algorithm and data structure implementations (primarily in Python) meant to serve as both learning material and reference code for engineers. It includes code for graph algorithms, heap data structures, stacks, queues, and more — each implemented cleanly so learners can trace logic and adapt for their problems.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Modular toolkit for Data Processing MDP
    The Modular toolkit for Data Processing (MDP) is a Python data processing framework. From the user's perspective, MDP is a collection of supervised and unsupervised learning algorithms and other data processing units that can be combined into data processing sequences and more complex feed-forward network architectures. From the scientific developer's perspective, MDP is a modular framework, which can easily be expanded.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 21
    SteppedStateMachine

    SteppedStateMachine

    Creates and operates a stepped state machine

    Implements a stepped state machine, i.e. a state machine which executes a single state transition at a time. Because of this, no data, e.g. state data, can be stored between executions. Instead, any such data must be stored in persistent storage between executions. This permits operation of the state machine as a CGI program in a web server. A WSGI or fastCGI or other such web server is not required. Received symbols may be received from sources outside the state machine, or may be...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22

    MarketSim

    A python based auction market simulator for agricultural trade

    The market assumes an environment in which farmers sell their produce through brokers and traders locate produce to buy through brokers. The major aim of the simulator is to experiment with various reputation mechanisms to manage bottlenecks and to model various adversarial scenarios. The market is aimed to simulate agricultural trade in developing countries. It is written in python and mysql database on Linux.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23

    PyVision Computer Vision Toolkit

    A Python computer vision library

    PyVision is a object-oriented Computer Vision Toolkit for researchers that contains vision and machine learning algorithms and algorithm analysis and easily interfaces with scipy/numpy, PIL, opencv and other computer and machine learning libraries.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24

    ProximityForest

    Efficient Approximate Nearest Neighbors for General Metric Spaces

    A proximity forest is a data structure that allows for efficient computation of approximate nearest neighbors of arbitrary data elements in a metric space. See: O'Hara and Draper, "Are You Using the Right Approximate Nearest Neighbor Algorithm?", WACV 2013 (best student paper award). One application of a ProximityForest is given in the following CVPR publication: Stephen O'Hara and Bruce A. Draper, "Scalable Action Recognition with a Subspace Forest," IEEE Conference on Computer...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25

    ktree

    clustering, machine learning, algorithms

    This project has moved to github at http://lmwtree.devries.ninja.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next