Showing 54 open source projects for "machine learning python"

View related business solutions
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • Level Up Your Cyber Defense with External Threat Management Icon
    Level Up Your Cyber Defense with External Threat Management

    See every risk before it hits. From exposed data to dark web chatter. All in one unified view.

    Move beyond alerts. Gain full visibility, context, and control over your external attack surface to stay ahead of every threat.
    Try for Free
  • 1
    The Algorithms Python

    The Algorithms Python

    All Algorithms implemented in Python

    ...The project covers various domains including mathematics, cryptography, machine learning, sorting, graph theory, and more. With contributions from a large global community, it continually grows and improves through collaboration and peer review. This repository is an ideal reference for students, educators, and developers seeking hands-on experience with algorithmic concepts in Python.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 2
    Rubix ML

    Rubix ML

    A high-level machine learning and deep learning library for PHP

    Rubix ML is a free open-source machine learning (ML) library that allows you to build programs that learn from your data using the PHP language. We provide tools for the entire machine learning life cycle from ETL to training, cross-validation, and production with over 40 supervised and unsupervised learning algorithms. In addition, we provide tutorials and other educational content to help you get started using ML in your projects.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Python Outlier Detection

    Python Outlier Detection

    A Python toolbox for scalable outlier detection

    PyOD is a comprehensive and scalable Python toolkit for detecting outlying objects in multivariate data. This exciting yet challenging field is commonly referred as outlier detection or anomaly detection. PyOD includes more than 30 detection algorithms, from classical LOF (SIGMOD 2000) to the latest COPOD (ICDM 2020) and SUOD (MLSys 2021). Since 2017, PyOD [AZNL19] has been successfully used in numerous academic researches and commercial products [AZHC+21, AZNHL19]. PyOD has multiple neural...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    FATE

    FATE

    An industrial grade federated learning framework

    FATE (Federated AI Technology Enabler) is the world's first industrial grade federated learning open source framework to enable enterprises and institutions to collaborate on data while protecting data security and privacy. It implements secure computation protocols based on homomorphic encryption and multi-party computation (MPC). Supporting various federated learning scenarios, FATE now provides a host of federated learning algorithms, including logistic regression, tree-based algorithms,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Business Automation Software for SMBs Icon
    Business Automation Software for SMBs

    Fed up with not having the time, money and resources to grow your business?

    The only software you need to increase cash flow, optimize resource utilization, and take control of your assets and inventory.
    Learn More
  • 5
    Armadillo

    Armadillo

    fast C++ library for linear algebra & scientific computing

    * Fast C++ library for linear algebra (matrix maths) and scientific computing * Easy to use functions and syntax, deliberately similar to Matlab / Octave * Uses template meta-programming techniques to increase efficiency * Provides user-friendly wrappers for OpenBLAS, Intel MKL, LAPACK, ATLAS, ARPACK, SuperLU and FFTW libraries * Useful for machine learning, pattern recognition, signal processing, bioinformatics, statistics, finance, etc. * Downloads: http://arma.sourceforge.net/download.html * Documentation: http://arma.sourceforge.net/docs.html * Bug reports: http://arma.sourceforge.net/faq.html * Git repo: https://gitlab.com/conradsnicta/armadillo-code
    Leader badge
    Downloads: 2,636 This Week
    Last Update:
    See Project
  • 6
    dlib C++ Library
    Dlib is a C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real world problems.
    Leader badge
    Downloads: 109 This Week
    Last Update:
    See Project
  • 7
    Bandicoot

    Bandicoot

    fast C++ library for GPU linear algebra & scientific computing

    * Fast GPU linear algebra library (matrix maths) for the C++ language, aiming towards a good balance between speed and ease of use * Provides high-level syntax and functionality deliberately similar to Matlab * Provides an API that is aiming to be compatible with Armadillo for easy transition between CPU and GPU linear algebra code * Useful for algorithm development directly in C++, or quick conversion of research code into production environments * Distributed under the permissive Apache 2.0 license, useful for both open-source and proprietary (closed-source) software * Can be used for machine learning, pattern recognition, computer vision, signal processing, bioinformatics, statistics, finance, etc * Downloads: http://coot.sourceforge.io/download.html * Documentation: http://coot.sourceforge.io/docs.html * Bug reports: http://coot.sourceforge.io/faq.html * Git repo: https://gitlab.com/conradsnicta/bandicoot-code
    Downloads: 13 This Week
    Last Update:
    See Project
  • 8
    MOA - Massive Online Analysis

    MOA - Massive Online Analysis

    Big Data Stream Analytics Framework.

    A framework for learning from a continuous supply of examples, a data stream. Includes classification, regression, clustering, outlier detection and recommender systems. Related to the WEKA project, also written in Java, while scaling to adaptive large scale machine learning.
    Leader badge
    Downloads: 45 This Week
    Last Update:
    See Project
  • 9
    MLPACK is a C++ machine learning library with emphasis on scalability, speed, and ease-of-use. Its aim is to make machine learning possible for novice users by means of a simple, consistent API, while simultaneously exploiting C++ language features to provide maximum performance and flexibility for expert users. * More info + downloads: https://mlpack.org * Git repo: https://github.com/mlpack/mlpack
    Downloads: 0 This Week
    Last Update:
    See Project
  • Free and Open Source HR Software Icon
    Free and Open Source HR Software

    OrangeHRM provides a world-class HRIS experience and offers everything you and your team need to be that HR hero you know that you are.

    Give your HR team the tools they need to streamline administrative tasks, support employees, and make informed decisions with the OrangeHRM free and open source HR software.
    Learn More
  • 10
    AlphaZero.jl

    AlphaZero.jl

    A generic, simple and fast implementation of Deepmind's AlphaZero

    ...This makes them hardly accessible for students, researchers and hackers. Many simple Python implementations can be found on Github, but none of them is able to beat a reasonable baseline on games such as Othello or Connect Four. As an illustration, the benchmark in the README of the most popular of them only features a random baseline, along with a greedy baseline that does not appear to be significantly stronger.
    Downloads: 18 This Week
    Last Update:
    See Project
  • 11
    Gym

    Gym

    Toolkit for developing and comparing reinforcement learning algorithms

    Gym by OpenAI is a toolkit for developing and comparing reinforcement learning algorithms. It supports teaching agents, everything from walking to playing games like Pong or Pinball. Open source interface to reinforce learning tasks. The gym library provides an easy-to-use suite of reinforcement learning tasks. Gym provides the environment, you provide the algorithm. You can write your agent using your existing numerical computation library, such as TensorFlow or Theano. It makes no...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    AlphaTensor

    AlphaTensor

    AI discovers faster, efficient algorithms for matrix multiplication

    ...Users can explore AlphaTensor’s discovered algorithms interactively using Colab notebooks or Python scripts.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 13

    DuranDuranbot

    Teachable/trainable artificially intelligent music bot

    A teachable/trainable artificially intelligent music bot fundamentally inspired by how the new wave band Duran Duran composes music. This program utilizes many algorithmic/AI techniques/processes, including machine learning; which allow you to teach/train it to compose music which you prefer... and the technique which is the foundation of the design of DuranDuranbot, which was directly inspired by how Duran Duran writes music........ Called, "bit by bit circular composition"....... and it's explanation can be found here - https://scsynth.org/t/bit-by-bit-circular-composition/1107 This program is written in the SuperCollider programming language - https://en.wikipedia.org/wiki/SuperCollider Contact - ken_brant@ymail.com
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    LeetCode Python

    LeetCode Python

    LeetCode Solutions: A Record of My Problem Solving Journey

    This repository is a comprehensive personal journal of LeetCode problem-solving journey. It includes detailed solutions with code, algorithm insights, data structure summaries, Anki flashcards, daily challenge logs, and future planning sections.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Machine Learning Cheat Sheet

    Machine Learning Cheat Sheet

    Classical equations and diagrams in machine learning

    This repository is a visually rich and well-organized “cheat sheet” summarizing core machine learning concepts, algorithms, formulas, and best practices. It includes summaries of supervised and unsupervised learning methods, model evaluation metrics (accuracy, precision, recall, ROC/AUC), overfitting/underfitting, regularization (L1/L2), cross-validation, feature engineering techniques, and perhaps tips for hyperparameter tuning.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Detectron2

    Detectron2

    Next-generation platform for object detection and segmentation

    Detectron2 is Facebook AI Research's next generation software system that implements state-of-the-art object detection algorithms. It is a ground-up rewrite of the previous version, Detectron, and it originates from maskrcnn-benchmark. It is powered by the PyTorch deep learning framework. Includes more features such as panoptic segmentation, Densepose, Cascade R-CNN, rotated bounding boxes, PointRend, DeepLab, etc. Can be used as a library to support different projects on top of it. We'll...
    Downloads: 9 This Week
    Last Update:
    See Project
  • 17
    Machine Learning Octave

    Machine Learning Octave

    MatLab/Octave examples of popular machine learning algorithms

    This repository contains MATLAB / Octave implementations of popular machine learning algorithms, along with explanatory code and mathematical derivations, intended as educational material rather than production code. Implementations of supervised learning algorithms (linear regression, logistic regression, neural nets). The author’s goal is to help users understand how each algorithm works “from scratch,” avoiding black-box library calls.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 18
    interactive-coding-challenges

    interactive-coding-challenges

    120+ interactive Python coding interview challenges

    Interactive Coding Challenges is a collection of practice problems designed to strengthen data structures, algorithms, and problem-solving skills. The repository emphasizes a learn-by-doing approach: you read a prompt, attempt a solution, and verify behavior with tests, often within notebooks or scripts. Problems span arrays, strings, stacks, queues, linked lists, trees, graphs, dynamic programming, and more, mirroring common interview themes. Many challenges include hints and reference...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Smart Algorithm

    Smart Algorithm

    Repository implementing a variety of intelligent algorithms

    Smart-Algorithm is a repository implementing a variety of intelligent / metaheuristic optimization algorithms (e.g. Genetic Algorithm, Ant Colony, Particle Swarm, Immune Algorithm). The implementations are provided in multiple languages (Java, Python, MATLAB). The repository’s aim is to offer reference implementations of “smart” algorithms for tasks like route planning, optimization, or algorithm learning. Particle Swarm Optimization (PSO) implementations in multiple languages. Immune Algorithm (or immune-inspired optimization) implementations. Multiple versions/language compatibility (Java, Python, MATLAB).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    MADDPG

    MADDPG

    Code for the MADDPG algorithm from a paper

    MADDPG (Multi-Agent Deep Deterministic Policy Gradient) is the official code release from OpenAI’s paper Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments. The repository implements a multi-agent reinforcement learning algorithm that extends DDPG to scenarios where multiple agents interact in shared environments. Each agent has its own policy, but training uses centralized critics conditioned on the observations and actions of all agents, enabling learning in...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 21
    Baselines

    Baselines

    High-quality implementations of reinforcement learning algorithms

    Unlike the other two, openai/baselines is not currently a maintained or prominent repo in the OpenAI organization (and I found no strong reference in OpenAI’s main GitHub). Historically, “baselines” repositories are often used for baseline implementations of reinforcement learning algorithms or reference models (e.g. in the RL domain). If there was an OpenAI “baselines” repo, it might have contained reference implementations for reinforcement learning or model policy baselines to compare new...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    PRMLT

    PRMLT

    Matlab code of machine learning algorithms in book PRML

    This Matlab package implements machine learning algorithms described in the great textbook: Pattern Recognition and Machine Learning by C. Bishop (PRML). It is written purely in Matlab language. It is self-contained. There is no external dependency. This package requires Matlab R2016b or latter, since it utilizes a new Matlab syntax called Implicit expansion (a.k.a. broadcasting).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Coach

    Coach

    Enables easy experimentation with state of the art algorithms

    ...Coach collects statistics from the training process and supports advanced visualization techniques for debugging the agent being trained. Coach supports many state-of-the-art reinforcement learning algorithms, which are separated into three main classes - value optimization, policy optimization, and imitation learning. Coach supports a large number of environments which can be solved using reinforcement learning.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Active Learning

    Active Learning

    Framework and examples for active learning with machine learning model

    Active Learning is a Python-based research framework developed by Google for experimenting with and benchmarking various active learning algorithms. It provides modular tools for running reproducible experiments across different datasets, sampling strategies, and machine learning models. The system allows researchers to study how models can improve labeling efficiency by selectively querying the most informative data points rather than relying on uniformly sampled training sets. ...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 25
    Omniglot

    Omniglot

    Omniglot data set for one-shot learning

    This repository hosts the Omniglot dataset for one-shot learning, containing handwritten characters across multiple alphabets along with stroke data. It includes both MATLAB and Python starter scripts (e.g. demo.m, demo.py) to illustrate how to load the images and stroke sequences and run baseline experiments (such as classification by modified Hausdorff distance). The dataset provides both an image representation of each character and the time-ordered stroke coordinates ([x, y, t]) for each instance. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • Next