Showing 8 open source projects for "learning system"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Context for your AI agents Icon
    Context for your AI agents

    Crawl websites, sync to vector databases, and power RAG applications. Pre-built integrations for LLM pipelines and AI assistants.

    Build data pipelines that feed your AI models and agents without managing infrastructure. Crawl any website, transform content, and push directly to your preferred vector store. Use 10,000+ tools for RAG applications, AI assistants, and real-time knowledge bases. Monitor site changes, trigger workflows on new data, and keep your AIs fed with fresh, structured information. Cloud-native, API-first, and free to start until you need to scale.
    Try for free
  • 1
    GLM-TTS

    GLM-TTS

    Controllable & emotion-expressive zero-shot TTS

    ...The system introduces a multi-reward reinforcement learning framework that jointly optimizes for voice similarity, emotional expressiveness, pronunciation, and intelligibility, yielding output that can rival commercial options in naturalness and expressiveness. GLM-TTS also supports phoneme-level control and hybrid text + phoneme input, giving developers precise control over pronunciation critical for multilingual or polyphone­-rich languages.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Poetiq

    Poetiq

    Reproduction of Poetiq's record-breaking submission to the ARC-AGI-1

    poetiq-arc-agi-solver is the open-source codebase from Poetiq that replicates their record-breaking submission to the challenging benchmark suite ARC-AGI (both ARC-AGI-1 and ARC-AGI-2). The project demonstrates a system that orchestrates large language models (LLMs) — like those from major providers — with carefully engineered prompting, reasoning workflows, and dynamic strategies, to tackle the abstract, logic-heavy problems in ARC-AGI. Instead of relying on a single prompt or fixed...
    Downloads: 9 This Week
    Last Update:
    See Project
  • 3
    AlphaFold 3

    AlphaFold 3

    AlphaFold 3 inference pipeline

    AlphaFold 3, developed by Google DeepMind, is an advanced deep learning system for predicting biomolecular structures and interactions with exceptional accuracy. This repository provides the complete inference pipeline for running AlphaFold 3, though access to the model parameters is restricted and must be obtained directly from Google under specific terms of use. The system is designed for scientific research applications in structural biology, biochemistry, and bioinformatics, enabling accurate modeling of proteins, ligands, and covalent modifications. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 4
    fairseq2

    fairseq2

    FAIR Sequence Modeling Toolkit 2

    fairseq2 is a modern, modular sequence modeling framework developed by Meta AI Research as a complete redesign of the original fairseq library. Built from the ground up for scalability, composability, and research flexibility, fairseq2 supports a broad range of language, speech, and multimodal content generation tasks, including instruction fine-tuning, reinforcement learning from human feedback (RLHF), and large-scale multilingual modeling. Unlike the original fairseq—which evolved into a...
    Downloads: 2 This Week
    Last Update:
    See Project
  • Run applications fast and securely in a fully managed environment Icon
    Run applications fast and securely in a fully managed environment

    Cloud Run is a fully-managed compute platform that lets you run your code in a container directly on top of scalable infrastructure.

    Run frontend and backend services, batch jobs, deploy websites and applications, and queue processing workloads without the need to manage infrastructure.
    Try for free
  • 5
    Watermark Anything

    Watermark Anything

    Official implementation of Watermark Anything with Localized Messages

    Watermark Anything (WAM) is an advanced deep learning framework for embedding and detecting localized watermarks in digital images. Developed by Facebook Research, it provides a robust, flexible system that allows users to insert one or multiple watermarks within selected image regions while maintaining visual quality and recoverability. Unlike traditional watermarking methods that rely on uniform embedding, WAM supports spatially localized watermarks, enabling targeted protection of specific image regions or objects. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    Demucs

    Demucs

    Code for the paper Hybrid Spectrogram and Waveform Source Separation

    Demucs (Deep Extractor for Music Sources) is a deep-learning framework for music source separation—extracting individual instrument or vocal tracks from a mixed audio file. The system is based on a U-Net-like convolutional architecture combined with recurrent and transformer elements to capture both short-term and long-term temporal structure. It processes raw waveforms directly rather than spectrograms, allowing for higher-quality reconstruction and fewer artifacts in separated tracks. ...
    Downloads: 49 This Week
    Last Update:
    See Project
  • 7
    VALL-E

    VALL-E

    PyTorch implementation of VALL-E (Zero-Shot Text-To-Speech)

    ...During the pre-training stage, we scale up the TTS training data to 60K hours of English speech which is hundreds of times larger than existing systems. VALL-E emerges in-context learning capabilities and can be used to synthesize high-quality personalized speech with only a 3-second enrolled recording of an unseen speaker as an acoustic prompt. Experiment results show that VALL-E significantly outperforms the state-of-the-art zero-shot TTS system in terms of speech naturalness and speaker similarity. In addition, we find VALL-E could preserve the speaker's emotion and acoustic environment of the acoustic prompt in synthesis.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 8
    PyTorch-BigGraph

    PyTorch-BigGraph

    Generate embeddings from large-scale graph-structured data

    PyTorch-BigGraph (PBG) is a system for learning embeddings on massive graphs—think billions of nodes and edges—using partitioning and distributed training to keep memory and compute tractable. It shards entities into partitions and buckets edges so that each training pass only touches a small slice of parameters, which drastically reduces peak RAM and enables horizontal scaling across machines.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next