Showing 188 open source projects for "python-i2c-tiny-usb"

View related business solutions
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    CogView4

    CogView4

    CogView4, CogView3-Plus and CogView3(ECCV 2024)

    CogView4 is the latest generation in the CogView series of vision-language foundation models, developed as a bilingual (Chinese and English) open-source system for high-quality image understanding and generation. Built on top of the GLM framework, it supports multimodal tasks including text-to-image synthesis, image captioning, and visual reasoning. Compared to previous CogView versions, CogView4 introduces architectural upgrades, improved training pipelines, and larger-scale datasets,...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 2
    Tencent-Hunyuan-Large

    Tencent-Hunyuan-Large

    Open-source large language model family from Tencent Hunyuan

    Tencent-Hunyuan-Large is the flagship open-source large language model family from Tencent Hunyuan, offering both pre-trained and instruct (fine-tuned) variants. It is designed with long-context capabilities, quantization support, and high performance on benchmarks across general reasoning, mathematics, language understanding, and Chinese / multilingual tasks. It aims to provide competitive capability with efficient deployment and inference. FP8 quantization support to reduce memory usage...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 3
    Watermark Anything

    Watermark Anything

    Official implementation of Watermark Anything with Localized Messages

    Watermark Anything (WAM) is an advanced deep learning framework for embedding and detecting localized watermarks in digital images. Developed by Facebook Research, it provides a robust, flexible system that allows users to insert one or multiple watermarks within selected image regions while maintaining visual quality and recoverability. Unlike traditional watermarking methods that rely on uniform embedding, WAM supports spatially localized watermarks, enabling targeted protection of...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 4
    CLIP

    CLIP

    CLIP, Predict the most relevant text snippet given an image

    CLIP (Contrastive Language-Image Pretraining) is a neural model that links images and text in a shared embedding space, allowing zero-shot image classification, similarity search, and multimodal alignment. It was trained on large sets of (image, caption) pairs using a contrastive objective: images and their matching text are pulled together in embedding space, while mismatches are pushed apart. Once trained, you can give it any text labels and ask it to pick which label best matches a given...
    Downloads: 3 This Week
    Last Update:
    See Project
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • 5
    Gemma in PyTorch

    Gemma in PyTorch

    The official PyTorch implementation of Google's Gemma models

    gemma_pytorch provides the official PyTorch reference for running and fine-tuning Google’s Gemma family of open models. It includes model definitions, configuration files, and loading utilities for multiple parameter scales, enabling quick evaluation and downstream adaptation. The repository demonstrates text generation pipelines, tokenizer setup, quantization paths, and adapters for low-rank or parameter-efficient fine-tuning. Example notebooks walk through instruction tuning and evaluation...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 6
    AlphaFold 3

    AlphaFold 3

    AlphaFold 3 inference pipeline

    AlphaFold 3, developed by Google DeepMind, is an advanced deep learning system for predicting biomolecular structures and interactions with exceptional accuracy. This repository provides the complete inference pipeline for running AlphaFold 3, though access to the model parameters is restricted and must be obtained directly from Google under specific terms of use. The system is designed for scientific research applications in structural biology, biochemistry, and bioinformatics, enabling...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 7
    Improved Diffusion

    Improved Diffusion

    Release for Improved Denoising Diffusion Probabilistic Models

    improved-diffusion is an open source implementation of diffusion probabilistic models created by OpenAI. These models, also known as score-based generative models, are a class of generative models that have shown strong performance in producing high-quality synthetic data such as images. The repository provides code for training and sampling diffusion models with improved techniques that enhance stability, efficiency, and output fidelity. It includes scripts for setting up training runs,...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 8
    Qwen3 Embedding

    Qwen3 Embedding

    Designed for text embedding and ranking tasks

    Qwen3-Embedding is a model series from the Qwen family designed specifically for text embedding and ranking tasks. It builds upon the Qwen3 base/dense models and offers several sizes (0.6B, 4B, 8B parameters), for both embedding and reranking, with high multilingual capability, long‐context understanding, and reasoning. It achieves state-of-the-art performance on benchmarks like MTEB (Multilingual Text Embedding Benchmark) and supports instruction-aware embedding (i.e. embedding task...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 9
    Ring

    Ring

    Ring is a reasoning MoE LLM provided and open-sourced by InclusionAI

    Ring is a reasoning Mixture-of-Experts (MoE) large language model (LLM) developed by inclusionAI. It is built from or derived from Ling. Its design emphasizes reasoning, efficiency, and modular expert activation. In its “flash” variant (Ring-flash-2.0), it optimizes inference by activating only a subset of experts. It applies reinforcement learning/reasoning optimization techniques. Its architectures and training approaches are tuned to enable efficient and capable reasoning performance....
    Downloads: 3 This Week
    Last Update:
    See Project
  • Build Securely on Azure with Proven Frameworks Icon
    Build Securely on Azure with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 10
    VMZ (Video Model Zoo)

    VMZ (Video Model Zoo)

    VMZ: Model Zoo for Video Modeling

    The codebase was designed to help researchers and practitioners quickly reproduce FAIR’s results and leverage robust pre-trained backbones for downstream tasks. It also integrates Gradient Blending, an audio-visual modeling method that fuses modalities effectively (available in the Caffe2 implementation). Although VMZ is now archived and no longer actively maintained, it remains a valuable reference for understanding early large-scale video model training, transfer learning, and multimodal...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 11
    DeepSeek VL

    DeepSeek VL

    Towards Real-World Vision-Language Understanding

    DeepSeek-VL is DeepSeek’s initial vision-language model that anchors their multimodal stack. It enables understanding and generation across visual and textual modalities—meaning it can process an image + a prompt, answer questions about images, caption, classify, or reason about visuals in context. The model is likely used internally as the visual encoder backbone for agent use cases, to ground perception in downstream tasks (e.g. answering questions about a screenshot). The repository...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 12
    CodeGeeX2

    CodeGeeX2

    CodeGeeX2: A More Powerful Multilingual Code Generation Model

    CodeGeeX2 is the second-generation multilingual code generation model from ZhipuAI, built upon the ChatGLM2-6B architecture and trained on 600B code tokens. Compared to the first generation, it delivers a significant boost in programming ability across multiple languages, outperforming even larger models like StarCoder-15B in some benchmarks despite having only 6B parameters. The model excels at code generation, translation, summarization, debugging, and comment generation, and it supports...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 13
    Phi-3-MLX

    Phi-3-MLX

    Phi-3.5 for Mac: Locally-run Vision and Language Models

    Phi-3-Vision-MLX is an Apple MLX (machine learning on Apple silicon) implementation of Phi-3 Vision, a lightweight multi-modal model designed for vision and language tasks. It focuses on running vision-language AI efficiently on Apple hardware like M1 and M2 chips.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 14
    GLM-V

    GLM-V

    GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning

    GLM-V is an open-source vision-language model (VLM) series from ZhipuAI that extends the GLM foundation models into multimodal reasoning and perception. The repository provides both GLM-4.5V and GLM-4.1V models, designed to advance beyond basic perception toward higher-level reasoning, long-context understanding, and agent-based applications. GLM-4.5V builds on the flagship GLM-4.5-Air foundation (106B parameters, 12B active), achieving state-of-the-art results on 42 benchmarks across image,...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 15
    HunyuanImage-3.0

    HunyuanImage-3.0

    A Powerful Native Multimodal Model for Image Generation

    HunyuanImage-3.0 is a powerful, native multimodal text-to-image generation model released by Tencent’s Hunyuan team. It unifies multimodal understanding and generation in a single autoregressive framework, combining text and image modalities seamlessly rather than relying on separate image-only diffusion components. It uses a Mixture-of-Experts (MoE) architecture with many expert subnetworks to scale efficiently, deploying only a subset of experts per token, which allows large parameter...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 16
    GLM-4-Voice

    GLM-4-Voice

    GLM-4-Voice | End-to-End Chinese-English Conversational Model

    GLM-4-Voice is an open-source speech-enabled model from ZhipuAI, extending the GLM-4 family into the audio domain. It integrates advanced voice recognition and generation with the multimodal reasoning capabilities of GLM-4, enabling smooth natural interaction via spoken input and output. The model supports real-time speech-to-text transcription, spoken dialogue understanding, and text-to-speech synthesis, making it suitable for conversational AI, virtual assistants, and accessibility...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 17
    Qwen-Audio

    Qwen-Audio

    Chat & pretrained large audio language model proposed by Alibaba Cloud

    Qwen-Audio is a large audio-language model developed by Alibaba Cloud, built to accept various types of audio input (speech, natural sounds, music, singing) along with text input, and output text. There is also an instruction-tuned version called Qwen-Audio-Chat which supports conversational interaction (multi-round), audio + text input, creative tasks and reasoning over audio. It uses multi-task training over many different audio tasks (30+), and achieves strong multi-benchmarks performance...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 18
    Qwen2-Audio

    Qwen2-Audio

    Repo of Qwen2-Audio chat & pretrained large audio language model

    Qwen2-Audio is a large audio-language model by Alibaba Cloud, part of the Qwen series. It is trained to accept various audio signal inputs (including speech, sounds, etc.) and perform both voice chat and audio analysis, producing textual responses. It supports two major modes: Voice Chat (interactive voice only input) and Audio Analysis (audio + text instructions), with both base and instruction-tuned models. It is evaluated on many benchmarks (speech recognition, translation, sound...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 19
    Clay Foundation Model

    Clay Foundation Model

    The Clay Foundation Model - An open source AI model and interface

    The Clay Foundation Model is an open-source AI model and interface designed to provide comprehensive data and insights about Earth. It aims to serve as a foundational tool for environmental monitoring, research, and decision-making by integrating various data sources and offering an accessible platform for analysis.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Depth Pro

    Depth Pro

    Sharp Monocular Metric Depth in Less Than a Second

    Depth Pro is a foundation model for zero-shot metric monocular depth estimation, producing sharp, high-frequency depth maps with absolute scale from a single image. Unlike many prior approaches, it does not require camera intrinsics or extra metadata, yet still outputs metric depth suitable for downstream 3D tasks. Apple highlights both accuracy and speed: the model can synthesize a ~2.25-megapixel depth map in around 0.3 seconds on a standard GPU, enabling near real-time applications. The...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 21
    VGGSfM

    VGGSfM

    VGGSfM: Visual Geometry Grounded Deep Structure From Motion

    VGGSfM is an advanced structure-from-motion (SfM) framework jointly developed by Meta AI Research (GenAI) and the University of Oxford’s Visual Geometry Group (VGG). It reconstructs 3D geometry, dense depth, and camera poses directly from unordered or sequential images and videos. The system combines learned feature matching and geometric optimization to generate high-quality camera calibrations, sparse/dense point clouds, and depth maps in standard COLMAP format. Version 2.0 adds support...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 22
    Map-Anything

    Map-Anything

    MapAnything: Universal Feed-Forward Metric 3D Reconstruction

    Map-Anything is a universal, feed-forward transformer for metric 3D reconstruction that predicts a scene’s geometry and camera parameters directly from visual inputs. Instead of stitching together many task-specific models, it uses a single architecture that supports a wide range of 3D tasks—multi-image structure-from-motion, multi-view stereo, monocular metric depth, registration, depth completion, and more. The model flexibly accepts different input combinations (images, intrinsics, poses,...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 23
    Qwen2.5-Math

    Qwen2.5-Math

    A series of math-specific large language models of our Qwen2 series

    Qwen2.5-Math is a series of mathematics-specialized large language models in the Qwen2 family, released by Alibaba’s QwenLM. It includes base models (1.5B / 7B / 72B parameters), instruction-tuned versions, and a reward model (RM) to improve alignment. Unlike its predecessor Qwen2-Math, Qwen2.5-Math supports both Chain-of-Thought (CoT) reasoning and Tool-Integrated Reasoning (TIR) for solving math problems, and works in both Chinese and English. It is optimized for solving mathematical...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 24
    Surya

    Surya

    Implementation of the Surya Foundation Model for Heliophysics

    Surya is an open‑source, AI‑based foundation model for heliophysics developed collaboratively by NASA (via the IMPACT AI team) and IBM. Named after the Sanskrit word for “sun,” Surya is trained on nine years of high‑resolution solar imagery from NASA’s Solar Dynamics Observatory (SDO). It is designed to forecast solar phenomena—such as flares, solar wind, irradiance, and active region behavior—by predicting future solar images with a sophisticated long–short vision transformer architecture,...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 25
    BitNet

    BitNet

    Inference framework for 1-bit LLMs

    BitNet (bitnet.cpp) is a high-performance inference framework designed to optimize the execution of 1-bit large language models, making them more efficient for edge devices and local deployment. The framework offers significant speedups and energy reductions, achieving up to 6.17x faster performance on x86 CPUs and 70% energy savings, allowing the running of models such as the BitNet b1.58 100B with impressive efficiency. With support for lossless inference and enhanced processing power,...
    Downloads: 2 This Week
    Last Update:
    See Project