Showing 73 open source projects for "image"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Cloud tools for web scraping and data extraction Icon
    Cloud tools for web scraping and data extraction

    Deploy pre-built tools that crawl websites, extract structured data, and feed your applications. Reliable web data without maintaining scrapers.

    Automate web data collection with cloud tools that handle anti-bot measures, browser rendering, and data transformation out of the box. Extract content from any website, push to vector databases for RAG workflows, or pipe directly into your apps via API. Schedule runs, set up webhooks, and connect to your existing stack. Free tier available, then scale as you need to.
    Explore 10,000+ tools
  • 1
    HunyuanWorld-Voyager

    HunyuanWorld-Voyager

    RGBD video generation model conditioned on camera input

    HunyuanWorld-Voyager is a next-generation video diffusion framework developed by Tencent-Hunyuan for generating world-consistent 3D scene videos from a single input image. By leveraging user-defined camera paths, it enables immersive scene exploration and supports controllable video synthesis with high realism. The system jointly produces aligned RGB and depth video sequences, making it directly applicable to 3D reconstruction tasks. At its core, Voyager integrates a world-consistent video diffusion model with an efficient long-range world exploration engine powered by auto-regressive inference. ...
    Downloads: 49 This Week
    Last Update:
    See Project
  • 2
    Stable Diffusion Version 2

    Stable Diffusion Version 2

    High-Resolution Image Synthesis with Latent Diffusion Models

    Stable Diffusion (the stablediffusion repo by Stability-AI) is an open-source implementation and reference codebase for high-resolution latent diffusion image models that power many text-to-image systems. The repository provides code for training and running Stable Diffusion-style models, instructions for installing dependencies (with notes about performance libraries like xformers), and guidance on hardware/driver requirements for efficient GPU inference and training. It’s organized as a practical, developer-focused toolkit: model code, scripts for inference, and examples for using memory-efficient attention and related optimizations are included so researchers and engineers can run or adapt the model for their own projects. ...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 3
    Qwen2.5-Omni

    Qwen2.5-Omni

    Capable of understanding text, audio, vision, video

    ...It supports “Thinker-Talker” architecture, and introduces innovations for aligning modalities over time (for example synchronizing video/audio), robust speech generation, and low-VRAM/quantized versions to make usage more accessible. It holds state-of-the-art performance in many multimodal benchmarks, particularly spoken language understanding, audio reasoning, image/video understanding, etc. Very strong benchmark performance across modalities (audio understanding, speech recognition, image/video reasoning) and often outperforming or matching single-modality models at a similar scale. Real-time streaming responses, including natural speech synthesis (text-to-speech) and chunked inputs for low latency interaction.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 4
    HunyuanVideo-I2V

    HunyuanVideo-I2V

    A Customizable Image-to-Video Model based on HunyuanVideo

    HunyuanVideo-I2V is a customizable image-to-video generation framework from Tencent Hunyuan, built on their HunyuanVideo foundation. It extends video generation so that given a static reference image plus an optional prompt, it generates a video sequence that preserves the reference image’s identity (especially in the first frame) and allows stylized effects via LoRA adapters.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Inventors: Validate Your Idea, Protect It and Gain Market Advantages Icon
    Inventors: Validate Your Idea, Protect It and Gain Market Advantages

    SenseIP is ideal for individual inventors, startups, and businesses

    senseIP is an AI innovation platform for inventors, automating any aspect of IP from the moment you have an idea. You can have it researched for uniqueness and protected; quickly and effortlessly, without expensive attorneys. Built for business success while securing your competitive edge.
    Learn More
  • 5
    Perception Models

    Perception Models

    State-of-the-art Image & Video CLIP, Multimodal Large Language Models

    Perception Models is a state-of-the-art framework developed by Facebook Research for advanced image and video perception tasks. It introduces two primary components: the Perception Encoder (PE) for visual feature extraction and the Perception Language Model (PLM) for multimodal decoding and reasoning. The PE module is a family of vision encoders designed to excel in image and video understanding, surpassing models like SigLIP2, InternVideo2, and DINOv2 across multiple benchmarks. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Watermark Anything

    Watermark Anything

    Official implementation of Watermark Anything with Localized Messages

    Watermark Anything (WAM) is an advanced deep learning framework for embedding and detecting localized watermarks in digital images. Developed by Facebook Research, it provides a robust, flexible system that allows users to insert one or multiple watermarks within selected image regions while maintaining visual quality and recoverability. Unlike traditional watermarking methods that rely on uniform embedding, WAM supports spatially localized watermarks, enabling targeted protection of specific image regions or objects. The model is trained to balance imperceptibility, ensuring minimal visual distortion, with robustness against transformations and edits such as cropping or motion.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    SAM 3

    SAM 3

    Code for running inference and finetuning with SAM 3 model

    SAM 3 (Segment Anything Model 3) is a unified foundation model for promptable segmentation in both images and videos, capable of detecting, segmenting, and tracking objects. It accepts both text prompts (open-vocabulary concepts like “red car” or “goalkeeper in white”) and visual prompts (points, boxes, masks) and returns high-quality masks, boxes, and scores for the requested concepts. Compared with SAM 2, SAM 3 introduces the ability to exhaustively segment all instances of an...
    Downloads: 120 This Week
    Last Update:
    See Project
  • 8
    DeepSeek-OCR

    DeepSeek-OCR

    Contexts Optical Compression

    ...It is designed to extract text from images, PDFs, and scanned documents, and integrates with multimodal capabilities that understand layout, context, and visual elements beyond raw character recognition. The system treats OCR not simply as “read the text” but as “understand what the text is doing in the image”—for example distinguishing captions from body text, interpreting tables, or recognizing handwritten versus printed words. It supports local deployment, enabling organizations concerned about privacy or latency to run the pipeline on-premises rather than send sensitive documents to third-party cloud services. The codebase is written in Python with a focus on modularity: you can swap preprocessing, recognition, and post-processing components as needed for custom workflows.
    Downloads: 12 This Week
    Last Update:
    See Project
  • 9
    CogVLM2

    CogVLM2

    GPT4V-level open-source multi-modal model based on Llama3-8B

    ...Built on Meta-Llama-3-8B-Instruct, CogVLM2 significantly improves over its predecessor by providing stronger performance across multimodal benchmarks such as TextVQA, DocVQA, and ChartQA, while introducing extended context length support of up to 8K tokens and high-resolution image input up to 1344×1344. The series includes models for both image understanding and video understanding, with CogVLM2-Video supporting up to 1-minute videos by analyzing keyframes. It supports bilingual interaction (Chinese and English) and has open-source versions optimized for dialogue and video comprehension. Notably, the Int4 quantized version allows efficient inference on GPUs with only 16GB of memory. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • G-P - Global EOR Solution Icon
    G-P - Global EOR Solution

    Companies searching for an Employer of Record solution to mitigate risk and manage compliance, taxes, benefits, and payroll anywhere in the world

    With G-P's industry-leading Employer of Record (EOR) and Contractor solutions, you can hire, onboard and manage teams in 180+ countries — quickly and compliantly — without setting up entities.
    Learn More
  • 10
    VisualGLM-6B

    VisualGLM-6B

    Chinese and English multimodal conversational language model

    ...It builds on the ChatGLM-6B backbone, with 6.2 billion language parameters, and incorporates a BLIP2-Qformer visual module to connect vision and language. In total, the model has 7.8 billion parameters. Trained on a large bilingual dataset — including 30 million high-quality Chinese image-text pairs from CogView and 300 million English pairs — VisualGLM-6B is designed for image understanding, description, and question answering. Fine-tuning on long visual QA datasets further aligns the model’s responses with human preferences. The repository provides inference APIs, command-line demos, web demos, and efficient fine-tuning options like LoRA, QLoRA, and P-tuning. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Janus

    Janus

    Unified Multimodal Understanding and Generation Models

    Janus is a sophisticated open-source project from DeepSeek AI that aims to unify both visual understanding and image generation in a single model architecture. Rather than having separate systems for “look and describe” and “prompt and generate”, Janus uses an autoregressive transformer framework with a decoupled visual encoder—allowing it to ingest images for comprehension and to produce images from text prompts with shared internal representations.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 12
    Depth Pro

    Depth Pro

    Sharp Monocular Metric Depth in Less Than a Second

    Depth Pro is a foundation model for zero-shot metric monocular depth estimation, producing sharp, high-frequency depth maps with absolute scale from a single image. Unlike many prior approaches, it does not require camera intrinsics or extra metadata, yet still outputs metric depth suitable for downstream 3D tasks. Apple highlights both accuracy and speed: the model can synthesize a ~2.25-megapixel depth map in around 0.3 seconds on a standard GPU, enabling near real-time applications. The repo and research page emphasize boundary fidelity and crisp geometry, addressing a common weakness in monocular depth where edges can blur. ...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 13
    InstantCharacter

    InstantCharacter

    Personalize Any Characters with a Scalable Diffusion Transformer

    InstantCharacter is a tuning-free diffusion transformer framework created by Tencent Hunyuan / InstantX team, which enables generating images of a specific character (subject) from a single reference image, preserving identity and character features. Uses adapters, so full fine-tuning of the base model is not required. Demo scripts and pipeline API (via infer_demo.py, pipeline.py) included. It works by adapting a base image generation model with a lightweight adapter so that you can produce character-preserving generations in various downstream tasks (e.g. changing pose, clothing, scene) without needing full model fine-tuning. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    DreamCraft3D

    DreamCraft3D

    Official implementation of DreamCraft3D

    DreamCraft3D is DeepSeek’s generative 3D modeling framework / model family that likely extends their earlier 3D efforts (e.g. Shap-E or Point-E style models) with more capability, control, or expression. The name suggests a “dream crafting” metaphor—users probably supply textual or image prompts and generate 3D assets (point clouds, meshes, scenes). The repository includes model code, inference scripts, sample prompts, and possibly dataset preparation pipelines. It may integrate rendering or post-processing modules (e.g. mesh smoothing, texturing) to make the outputs more output-ready. Because 3D generation is hardware‐intensive, the repository likely also includes optimizations like quantization, pruning, or inference accelerations (e.g. using FlashMLA or DeepEP) to make the generation pipeline faster or more efficient. ...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 15
    Map-Anything

    Map-Anything

    MapAnything: Universal Feed-Forward Metric 3D Reconstruction

    ...Its inference path is fully feed-forward with optional mixed-precision and memory-efficient modes, making it practical to scale to long image sequences while keeping latency predictable.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 16
    MobileCLIP

    MobileCLIP

    Implementation of "MobileCLIP" CVPR 2024

    MobileCLIP is a family of efficient image-text embedding models designed for real-time, on-device retrieval and zero-shot classification. The repo provides training, inference, and evaluation code for MobileCLIP models trained on DataCompDR, and for newer MobileCLIP2 models trained on DFNDR. It includes an iOS demo app and Core ML artifacts to showcase practical, offline photo search and classification on iPhone-class hardware.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 17
    Phi-3-MLX

    Phi-3-MLX

    Phi-3.5 for Mac: Locally-run Vision and Language Models

    Phi-3-Vision-MLX is an Apple MLX (machine learning on Apple silicon) implementation of Phi-3 Vision, a lightweight multi-modal model designed for vision and language tasks. It focuses on running vision-language AI efficiently on Apple hardware like M1 and M2 chips.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    GLM-4.5V

    GLM-4.5V

    GLM-4.6V/4.5V/4.1V-Thinking, towards versatile multimodal reasoning

    ...It embodies the design philosophy of mixing visual and textual modalities into a unified model capable of general-purpose reasoning, content understanding, and generation, while already supporting a wide variety of tasks: from image captioning and visual question answering to content recognition, GUI-based agents, video understanding, and long-document interpretation. GLM-4.5V emerged from a training framework that leverages scalable reinforcement learning (with curriculum sampling) to boost performance across tasks ranging from STEM problem solving to long-context reasoning, giving it broad applicability beyond narrow benchmarks. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 19
    Qwen3-Omni

    Qwen3-Omni

    Qwen3-omni is a natively end-to-end, omni-modal LLM

    ...It uses a Thinker-Talker architecture with a Mixture-of-Experts (MoE) design, early text-first pretraining, and mixed multimodal training to support strong performance across all modalities without sacrificing text or image quality. The model supports 119 text languages, 19 speech input languages, and 10 speech output languages. It achieves state-of-the-art results: across 36 audio and audio-visual benchmarks, it hits open-source SOTA on 32 and overall SOTA on 22, outperforming or matching strong closed-source models such as Gemini-2.5 Pro and GPT-4o. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 20
    HY-World 1.5

    HY-World 1.5

    A Systematic Framework for Interactive World Modeling

    HY-WorldPlay is a Hunyuan AI project focusing on immersive multimodal content generation and interaction within virtual worlds or simulated environments. It aims to empower AI agents with the capability to both understand and generate multimedia content — including text, audio, image, and potentially 3D or game-world elements — enabling lifelike dialogue, environmental interpretations, and responsive world behavior. The platform targets use cases in digital entertainment, game worlds, training simulators, and interactive storytelling, where AI agents need to adapt to real-time user inputs and changes in environment state. ...
    Downloads: 7 This Week
    Last Update:
    See Project
  • 21
    CogVLM

    CogVLM

    A state-of-the-art open visual language model

    CogVLM is an open-source visual–language model suite—and its GUI-oriented sibling CogAgent—aimed at image understanding, grounding, and multi-turn dialogue, with optional agent actions on real UI screenshots. The flagship CogVLM-17B combines ~10B visual parameters with ~7B language parameters and supports 490×490 inputs; CogAgent-18B extends this to 1120×1120 and adds plan/next-action outputs plus grounded operation coordinates for GUI tasks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    DINOv2

    DINOv2

    PyTorch code and models for the DINOv2 self-supervised learning

    DINOv2 is a self-supervised vision learning framework that produces strong, general-purpose image representations without using human labels. It builds on the DINO idea of student–teacher distillation and adapts it to modern Vision Transformer backbones with a carefully tuned recipe for data augmentation, optimization, and multi-crop training. The core promise is that a single pretrained backbone can transfer well to many downstream tasks—from linear probing on classification to retrieval, detection, and segmentation—often requiring little or no fine-tuning. ...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 23
    WorldGen

    WorldGen

    Generate Any 3D Scene in Seconds

    WorldGen is an AI model and library that can generate full 3D scenes in a matter of seconds from either text prompts or reference images. It is designed to create interactive environments suitable for games, simulations, robotics research, and virtual reality, rather than just static 3D assets. The core idea is that you describe a world in natural language and WorldGen produces a navigable 3D scene that you can freely explore in 360 degrees, with loop closure so that the space remains...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 24
    MiniCPM-o

    MiniCPM-o

    A GPT-4o Level MLLM for Vision, Speech and Multimodal Live Streaming

    MiniCPM-o 2.6 is a cutting-edge multimodal large language model (MLLM) designed for high-performance tasks across vision, speech, and video. Capable of running on end-side devices such as smartphones and tablets, it provides powerful features like real-time speech conversation, video understanding, and multimodal live streaming. With 8 billion parameters, MiniCPM-o 2.6 surpasses its predecessors in versatility and efficiency, making it one of the most robust models available. It supports...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 25
    GLM-V

    GLM-V

    GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning

    ...The repository provides both GLM-4.5V and GLM-4.1V models, designed to advance beyond basic perception toward higher-level reasoning, long-context understanding, and agent-based applications. GLM-4.5V builds on the flagship GLM-4.5-Air foundation (106B parameters, 12B active), achieving state-of-the-art results on 42 benchmarks across image, video, document, GUI, and grounding tasks. It introduces hybrid training for broad-spectrum reasoning and a Thinking Mode switch to balance speed and depth of reasoning. GLM-4.1V-9B-Thinking incorporates reinforcement learning with curriculum sampling (RLCS) and Chain-of-Thought reasoning, outperforming models much larger in scale (e.g., Qwen-2.5-VL-72B) across many benchmarks.
    Downloads: 1 This Week
    Last Update:
    See Project