Showing 14 open source projects for "fast performance"

View related business solutions
  • Vibes don’t ship, Retool does Icon
    Vibes don’t ship, Retool does

    Start from a prompt and build production-ready apps on your data—with security, permissions, and compliance built in.

    Vibe coding tools create cool demos, but Retool helps you build software your company can actually use. Generate internal apps that connect directly to your data—deployed in your cloud with enterprise security from day one. Build dashboards, admin panels, and workflows with granular permissions already in place. Stop prototyping and ship on a platform that actually passes security review.
    Build apps that ship
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 1
    BitNet

    BitNet

    Inference framework for 1-bit LLMs

    BitNet (bitnet.cpp) is a high-performance inference framework designed to optimize the execution of 1-bit large language models, making them more efficient for edge devices and local deployment. The framework offers significant speedups and energy reductions, achieving up to 6.17x faster performance on x86 CPUs and 70% energy savings, allowing the running of models such as the BitNet b1.58 100B with impressive efficiency. With support for lossless inference and enhanced processing power,...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 2
    GLM-4.5

    GLM-4.5

    GLM-4.5: Open-source LLM for intelligent agents by Z.ai

    GLM-4.5 is a cutting-edge open-source large language model designed by Z.ai for intelligent agent applications. The flagship GLM-4.5 model has 355 billion total parameters with 32 billion active parameters, while the compact GLM-4.5-Air version offers 106 billion total parameters and 12 billion active parameters. Both models unify reasoning, coding, and intelligent agent capabilities, providing two modes: a thinking mode for complex reasoning and tool usage, and a non-thinking mode for...
    Downloads: 127 This Week
    Last Update:
    See Project
  • 3
    DFlash

    DFlash

    Block Diffusion for Ultra-Fast Speculative Decoding

    DFlash is an open-source framework for ultra-fast speculative decoding using a lightweight block diffusion model to draft text in parallel with a target large language model, dramatically improving inference speed without sacrificing generation quality. It acts as a “drafter” that proposes likely continuations which the main model then verifies, enabling significant throughput gains compared to traditional autoregressive decoding methods that generate token by token.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    llama.cpp

    llama.cpp

    Port of Facebook's LLaMA model in C/C++

    The llama.cpp project enables the inference of Meta's LLaMA model (and other models) in pure C/C++ without requiring a Python runtime. It is designed for efficient and fast model execution, offering easy integration for applications needing LLM-based capabilities. The repository focuses on providing a highly optimized and portable implementation for running large language models directly within C/C++ environments.
    Downloads: 122 This Week
    Last Update:
    See Project
  • Outgrown Windows Task Scheduler? Icon
    Outgrown Windows Task Scheduler?

    Free diagnostic identifies where your workflow is breaking down—with instant analysis of your scheduling environment.

    Windows Task Scheduler wasn't built for complex, cross-platform automation. Get a free diagnostic that shows exactly where things are failing and provides remediation recommendations. Interactive HTML report delivered in minutes.
    Download Free Tool
  • 5
    Z-Image

    Z-Image

    Image generation model with single-stream diffusion transformer

    Z-Image is an efficient, open-source image generation foundation model built to make high-quality image synthesis more accessible. With just 6 billion parameters — far fewer than many large-scale models — it uses a novel “single-stream diffusion Transformer” architecture to deliver photorealistic image generation, demonstrating that excellence does not always require extremely large model sizes. The project includes several variants: Z-Image-Turbo, a distilled version optimized for speed and...
    Downloads: 172 This Week
    Last Update:
    See Project
  • 6
    Tiktoken

    Tiktoken

    tiktoken is a fast BPE tokeniser for use with OpenAI's models

    tiktoken is a high-performance, tokenizer library (based on byte-pair encoding, BPE) designed for use with OpenAI’s models. It handles encoding and decoding text to token IDs efficiently, with minimal overhead. Because tokenization is a fundamental step in preparing text for models, tiktoken is optimized for speed, memory, and correctness in model contexts (e.g. matching OpenAI’s internal tokenization). The repo supports multiple encodings (e.g. “cl100k_base”) and lets users switch encoding...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    MiMo-V2-Flash

    MiMo-V2-Flash

    MiMo-V2-Flash: Efficient Reasoning, Coding, and Agentic Foundation

    MiMo-V2-Flash is a large Mixture-of-Experts language model designed to deliver strong reasoning, coding, and agentic-task performance while keeping inference fast and cost-efficient. It uses an MoE setup where a very large total parameter count is available, but only a smaller subset is activated per token, which helps balance capability with runtime efficiency. The project positions the model for workflows that require tool use, multi-step planning, and higher throughput, rather than only single-turn chat. ...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 8
    Blazeface

    Blazeface

    Blazeface is a lightweight model that detects faces in images

    Blazeface is a lightweight, high-performance face detection model designed for mobile and embedded devices, developed by TensorFlow. It is optimized for real-time face detection tasks and runs efficiently on mobile CPUs, ensuring minimal latency and power consumption. Blazeface is based on a fast architecture and uses deep learning techniques to detect faces with high accuracy, even in challenging conditions.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 9
    MediaPipe Face Detection

    MediaPipe Face Detection

    Detect faces in an image

    The MediaPipe Face Detection model is a high-performance, real-time face detection solution that uses machine learning to identify faces in images and video streams. It is optimized for mobile and embedded platforms, offering fast and accurate face detection while maintaining a small memory footprint. This model supports multiple face detections and is highly efficient, making it suitable for a variety of applications such as augmented reality, user authentication, and facial expression analysis.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Run applications fast and securely in a fully managed environment Icon
    Run applications fast and securely in a fully managed environment

    Cloud Run is a fully-managed compute platform that lets you run your code in a container directly on top of scalable infrastructure.

    Run frontend and backend services, batch jobs, deploy websites and applications, and queue processing workloads without the need to manage infrastructure.
    Try for free
  • 10
    CSM (Conversational Speech Model)

    CSM (Conversational Speech Model)

    A Conversational Speech Generation Model

    The CSM (Conversational Speech Model) is a speech generation model developed by Sesame AI that creates RVQ audio codes from text and audio inputs. It uses a Llama backbone and a smaller audio decoder to produce audio codes for realistic speech synthesis. The model has been fine-tuned for interactive voice demos and is hosted on platforms like Hugging Face for testing. CSM offers a flexible setup and is compatible with CUDA-enabled GPUs for efficient execution.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 11
    Universal Sentence Encoder

    Universal Sentence Encoder

    Encoder of greater-than-word length text trained on a variety of data

    The Universal Sentence Encoder (USE) is a pre-trained deep learning model designed to encode sentences into fixed-length embeddings for use in various natural language processing (NLP) tasks. It leverages Transformer and Deep Averaging Network (DAN) architectures to generate embeddings that capture the semantic meaning of sentences. The model is designed for tasks like sentiment analysis, semantic textual similarity, and clustering, and provides high-quality sentence representations in a...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Hunyuan-A13B-Instruct

    Hunyuan-A13B-Instruct

    Efficient 13B MoE language model with long context and reasoning modes

    Hunyuan-A13B-Instruct is a powerful instruction-tuned large language model developed by Tencent using a fine-grained Mixture-of-Experts (MoE) architecture. While the total model includes 80 billion parameters, only 13 billion are active per forward pass, making it highly efficient while maintaining strong performance across benchmarks. It supports up to 256K context tokens, advanced reasoning (CoT) abilities, and agent-based workflows with tool parsing. The model offers both fast and slow thinking modes, letting users trade off speed for deeper reasoning. It excels in mathematics, science, coding, and multi-turn conversation tasks, rivaling or outperforming larger models in several areas. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    gpt-oss-20b

    gpt-oss-20b

    OpenAI’s compact 20B open model for fast, agentic, and local use

    GPT-OSS-20B is OpenAI’s smaller, open-weight language model optimized for low-latency, agentic tasks, and local deployment. With 21B total parameters and 3.6B active parameters (MoE), it fits within 16GB of memory thanks to native MXFP4 quantization. Designed for high-performance reasoning, it supports Harmony response format, function calling, web browsing, and code execution. Like its larger sibling (gpt-oss-120b), it offers adjustable reasoning depth and full chain-of-thought visibility...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Jan-v1-edge

    Jan-v1-edge

    Jan-v1-edge: efficient 1.7B reasoning model optimized for edge devices

    ...With just 1.7B parameters, Jan-v1-edge achieves 83% accuracy on SimpleQA tasks, approaching the performance of larger models like Jan-nano-128k. Benchmark comparisons show it remains competitive or superior in areas such as EQBench and recency QA, though with slight trade-offs in instruction following and creative writing compared to similar-sized Qwen models.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next