Sec-Context
AI Code Security Anti-Patterns distilled from 150+ sources
Sec-Context is a curated security research project that distills common code anti-patterns and vulnerabilities that generative AI tends to produce, presenting them as a comprehensive set of examples and secure alternatives that can be used to train or guide AI assistants and reviewers toward safer code generation. It compiles insights from over 150 industry and academic sources into structured reference documents that outline real-world security problems such as hardcoded secrets, SQL injection, cross-site scripting, command injection, weak password storage, and other frequent issues that occur when code is auto-generated without context of best practices. ...