Showing 3 open source projects for "navigation"

View related business solutions
  • Build AI Apps with Gemini 3 on Vertex AI Icon
    Build AI Apps with Gemini 3 on Vertex AI

    Access Google’s most capable multimodal models. Train, test, and deploy AI with 200+ foundation models on one platform.

    Vertex AI gives developers access to Gemini 3—Google’s most advanced reasoning and coding model—plus 200+ foundation models including Claude, Llama, and Gemma. Build generative AI apps with Vertex AI Studio, customize with fine-tuning, and deploy to production with enterprise-grade MLOps. New customers get $300 in free credits.
    Try Vertex AI Free
  • Build on Google Cloud with $300 in Free Credit Icon
    Build on Google Cloud with $300 in Free Credit

    New to Google Cloud? Get $300 in free credit to explore Compute Engine, BigQuery, Cloud Run, Vertex AI, and 150+ other products.

    Start your next project with $300 in free Google Cloud credit. Spin up VMs, run containers, query exabytes in BigQuery, or build AI apps with Vertex AI and Gemini. Once your credits are used, keep building with 20+ products with free monthly usage, including Compute Engine, Cloud Storage, GKE, and Cloud Run functions. Sign up to start building right away.
    Start Free Trial
  • 1
    MAI-UI

    MAI-UI

    Real-World Centric Foundation GUI Agents

    MAI-UI is a cutting-edge open-source project that implements a family of foundation GUI (Graphical User Interface) agent models capable of interpreting natural language and performing real-world GUI navigation and control tasks across mobile and desktop environments. Developed by Tongyi-MAI (Alibaba’s research initiative), the MAI-UI models are multimodal agents trained to understand user instructions and corresponding screenshots, grounding those instructions to on-screen elements and generating sequences of GUI actions such as taps, swipes, text input, and system commands. ...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 2
    Habitat-Lab

    Habitat-Lab

    A modular high-level library to train embodied AI agents

    ...It is designed to train agents to perform a wide variety of embodied AI tasks in indoor environments, as well as develop agents that can interact with humans in performing these tasks. Allowing users to train agents in a wide variety of single and multi-agent tasks (e.g. navigation, rearrangement, instruction following, question answering, human following), as well as define novel tasks. Configuring and instantiating a diverse set of embodied agents, including commercial robots and humanoids, specifying their sensors and capabilities. Providing algorithms for single and multi-agent training (via imitation or reinforcement learning, or no learning at all as in SensePlanAct pipelines), as well as tools to benchmark their performance on the defined tasks using standard metrics.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 3
    Multi-Agent Particle Envs

    Multi-Agent Particle Envs

    Code for a multi-agent particle environment used in a paper

    ...Scenarios are designed to model cooperative, competitive, and mixed interactions among agents, making it useful for testing algorithms in multi-agent settings. The project includes built-in scenarios such as navigation to landmarks, cooperative tasks, and adversarial setups. Although archived, its concepts and code structure remain foundational for more advanced libraries like PettingZoo, which extended and maintained this environment.
    Downloads: 2 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
MongoDB Logo MongoDB
Gen AI apps are built with MongoDB Atlas
Atlas offers built-in vector search and global availability across 125+ regions. Start building AI apps faster, all in one place.
Try Free →