Showing 13 open source projects for "bayesian optimization"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    Build gen AI apps with an all-in-one modern database: MongoDB Atlas

    MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
    Start Free
  • 1
    Bayesian Optimization

    Bayesian Optimization

    Python implementation of global optimization with gaussian processes

    This is a constrained global optimization package built upon bayesian inference and gaussian process, that attempts to find the maximum value of an unknown function in as few iterations as possible. This technique is particularly suited for optimization of high cost functions, situations where the balance between exploration and exploitation is important. More detailed information, other advanced features, and tips on usage/implementation can be found in the examples folder. ...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 2
    Nevergrad

    Nevergrad

    A Python toolbox for performing gradient-free optimization

    Nevergrad is a Python library for derivative-free optimization, offering robust implementations of many algorithms suited for black-box functions (i.e. functions where gradients are unavailable or unreliable). It targets hyperparameter search, architecture search, control problems, and experimental tuning—domains in which gradient-based methods may fail or be inapplicable. The library provides an easy interface to define an optimization problem (parameter space, loss function, budget) and then experiment with multiple strategies—evolutionary algorithms, Bayesian optimization, bandit methods, genetic algorithms, etc. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    BayesianOptimization

    BayesianOptimization

    A Python implementation of global optimization with gaussian processes

    BayesianOptimization is a Python library that helps find the maximum (or minimum) of expensive or unknown objective functions using Bayesian optimization. This technique is especially useful for hyperparameter tuning in machine learning, where evaluating the objective function is costly. The library provides an easy-to-use API for defining bounds and optimizing over parameter spaces using probabilistic models like Gaussian Processes.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 4
    KerasTuner

    KerasTuner

    A Hyperparameter Tuning Library for Keras

    KerasTuner is an easy-to-use, scalable hyperparameter optimization framework that solves the pain points of hyperparameter search. Easily configure your search space with a define-by-run syntax, then leverage one of the available search algorithms to find the best hyperparameter values for your models. KerasTuner comes with Bayesian Optimization, Hyperband, and Random Search algorithms built-in, and is also designed to be easy for researchers to extend in order to experiment with new search algorithms.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Enterprise-grade ITSM, for every business Icon
    Enterprise-grade ITSM, for every business

    Give your IT, operations, and business teams the ability to deliver exceptional services—without the complexity.

    Freshservice is an intuitive, AI-powered platform that helps IT, operations, and business teams deliver exceptional service without the usual complexity. Automate repetitive tasks, resolve issues faster, and provide seamless support across the organization. From managing incidents and assets to driving smarter decisions, Freshservice makes it easy to stay efficient and scale with confidence.
    Try it Free
  • 5
    Meridian

    Meridian

    Meridian is an MMM framework

    Meridian is a comprehensive, open source marketing mix modeling (MMM) framework developed by Google to help advertisers analyze and optimize the impact of their marketing investments. Built on Bayesian causal inference principles, Meridian enables organizations to evaluate how different marketing channels influence key performance indicators (KPIs) such as revenue or conversions while accounting for external factors like seasonality or economic trends. The framework provides a robust...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 6
    PyMC3

    PyMC3

    Probabilistic programming in Python

    ...PyMC3 provides rich support for defining and using GPs. Variational inference saves computational cost by turning a problem of integration into one of optimization. PyMC3's variational API supports a number of cutting edge algorithms, as well as minibatch for scaling to large datasets.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    auto-sklearn

    auto-sklearn

    Automated machine learning with scikit-learn

    auto-sklearn is an automated machine learning toolkit and a drop-in replacement for a scikit-learn estimator. auto-sklearn frees a machine learning user from algorithm selection and hyperparameter tuning. It leverages recent advantages in Bayesian optimization, meta-learning and ensemble construction. Auto-sklearn 2.0 includes latest research on automatically configuring the AutoML system itself and contains a multitude of improvements which speed up the fitting the AutoML system. auto-sklearn 2.0 works the same way as regular auto-sklearn. auto-sklearn is licensed the same way as scikit-learn, namely the 3-clause BSD license.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    BayesianOptimization.jl

    BayesianOptimization.jl

    Bayesian optimization for Julia

    Bayesian optimization for Julia.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Deep Learning Drizzle

    Deep Learning Drizzle

    Drench yourself in Deep Learning, Reinforcement Learning

    Drench yourself in Deep Learning, Reinforcement Learning, Machine Learning, Computer Vision, and NLP by learning from these exciting lectures! Optimization courses which form the foundation for ML, DL, RL. Computer Vision courses which are DL & ML heavy. Speech recognition courses which are DL heavy. Structured Courses on Geometric, Graph Neural Networks. Section on Autonomous Vehicles. Section on Computer Graphics with ML/DL focus.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Find Hidden Risks in Windows Task Scheduler Icon
    Find Hidden Risks in Windows Task Scheduler

    Free diagnostic script reveals configuration issues, error patterns, and security risks. Instant HTML report.

    Windows Task Scheduler might be hiding critical failures. Download the free JAMS diagnostic tool to uncover problems before they impact production—get a color-coded risk report with clear remediation steps in minutes.
    Download Free Tool
  • 10
    BPL

    BPL

    Bayesian Program Learning model for one-shot learning

    BPL (Bayesian Program Learning) is a MATLAB implementation of the Bayesian Program Learning framework for one-shot concept learning (especially on handwritten characters). The approach treats each concept (e.g. a character) as being generated by a probabilistic program (motor primitives, strokes, spatial relationships), and inference proceeds by fitting those generative programs to a single example, generalizing to new examples, and generating new exemplars. The repository contains code for...
    Downloads: 9 This Week
    Last Update:
    See Project
  • 11
    RStan

    RStan

    RStan, the R interface to Stan

    RStan is the R interface to Stan, a C++ library for statistical modeling and high-performance statistical computation. It lets users specify models in the Stan modeling language (for Bayesian inference), compile them, and perform inference from R. Key inference approaches include full Bayesian inference via Hamiltonian Monte Carlo (specifically the No-U-Turn Sampler, NUTS), approximate Bayesian inference via variational methods, and optimization (penalized likelihood). RStan integrates with Stan’s automatic differentiation library, provides diagnostics, model comparison, posterior predictive checks, etc. ...
    Downloads: 7 This Week
    Last Update:
    See Project
  • 12
    The Java Data Mining Package (JDMP) is a library that provides methods for analyzing data with the help of machine learning algorithms (e.g. clustering, classification, graphical models, neural networks, Bayesian networks, text processing, optimization).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    ALCHEMY is a genotype calling algorithm for Affymetrix and Illumina products which is not based on clustering methods. Features include explicit handling of reduced heterozygosity due to inbreeding and accurate results with small sample sizes
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next