Showing 440 open source projects for "algorithms framework"

View related business solutions
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    Build gen AI apps with an all-in-one modern database: MongoDB Atlas

    MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
    Start Free
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    PHP JWT Framework

    PHP JWT Framework

    JWT Framework

    This project is a framework that provides an implementation of JWS JSON Web Signature (RFC 7515), JWE JSON Web Encryption (RFC 7516), JWK JSON Web Key (RFC 7517), JWA JSON Web Algorithms (RFC 7518), JWT JSON Web Token (RFC 7519), JSON Web Key Thumbprint (RFC 7638), Unencoded Payload Option (RFC7797).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    JUDI.jl

    JUDI.jl

    Julia Devito inversion

    JUDI is a framework for large-scale seismic modeling and inversion and is designed to enable rapid translations of algorithms to fast and efficient code that scales to industry-size 3D problems. The focus of the package lies on seismic modeling as well as PDE-constrained optimization such as full-waveform inversion (FWI) and imaging (LS-RTM). Wave equations in JUDI are solved with Devito, a Python domain-specific language for automated finite-difference (FD) computations. JUDI's modeling...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 3
    TensorFlow

    TensorFlow

    TensorFlow is an open source library for machine learning

    ... expresses its computations as dataflow graphs, with each node in the graph representing an operation. Nodes take tensors—multidimensional arrays—as input and produce tensors as output. The framework allows for these algorithms to be run in C++ for better performance, while the multiple levels of APIs let the user determine how high or low they wish the level of abstraction to be in the models produced. Tensorflow can also be used for research and production with TensorFlow Extended.
    Downloads: 9 This Week
    Last Update:
    See Project
  • 4
    Zephyr Project

    Zephyr Project

    Scalable, optimized, secure RTOS for multiple hardware architectures

    The Zephyr Project is a new generation real-time operating system (RTOS) that supports multiple hardware architectures. It is based on a small-footprint kernel specially designed for use on resource-constrained and embedded systems. The Zephyr OS can be used for a wide range of applications: from simple embedded environmental sensors and LED wearables to sophisticated embedded controllers, smart watches, and IoT wireless applications.
    Downloads: 8 This Week
    Last Update:
    See Project
  • No-Nonsense Code-to-Cloud Security for Devs | Aikido Icon
    No-Nonsense Code-to-Cloud Security for Devs | Aikido

    Connect your GitHub, GitLab, Bitbucket, or Azure DevOps account to start scanning your repos for free.

    Aikido provides a unified security platform for developers, combining 12 powerful scans like SAST, DAST, and CSPM. AI-driven AutoFix and AutoTriage streamline vulnerability management, while runtime protection blocks attacks.
    Start for Free
  • 5
    CryptoSwift

    CryptoSwift

    Collection of standard and secure cryptographic algorithms

    ... and they can be integrated similarly to how we’re used to integrating the .framework format. Embedded frameworks require a minimum deployment target of iOS 9 or macOS Sierra (10.12). CryptoSwift uses array of bytes aka Array<UInt8> as a base type for all operations. Every data may be converted to a stream of bytes. You will find convenience functions that accept String or Data, and it will be internally converted to the array of bytes.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 6
    OpenSpiel

    OpenSpiel

    Environments and algorithms for research in general reinforcement

    OpenSpiel is a collection of environments and algorithms for research in general reinforcement learning and search/planning in games. OpenSpiel supports n-player (single- and multi- agent) zero-sum, cooperative and general-sum, one-shot and sequential, strictly turn-taking and simultaneous-move, perfect and imperfect information games, as well as traditional multiagent environments such as (partially- and fully- observable) grid worlds and social dilemmas. OpenSpiel also includes tools...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 7
    Linfa

    Linfa

    A Rust machine learning framework

    linfa aims to provide a comprehensive toolkit to build Machine Learning applications with Rust. Kin in spirit to Python's scikit-learn, it focuses on common preprocessing tasks and classical ML algorithms for your everyday ML tasks.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 8
    H2O LLM Studio

    H2O LLM Studio

    Framework and no-code GUI for fine-tuning LLMs

    Welcome to H2O LLM Studio, a framework and no-code GUI designed for fine-tuning state-of-the-art large language models (LLMs). You can also use H2O LLM Studio with the command line interface (CLI) and specify the configuration file that contains all the experiment parameters. To finetune using H2O LLM Studio with CLI, activate the pipenv environment by running make shell. With H2O LLM Studio, training your large language model is easy and intuitive. First, upload your dataset and then start...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 9
    Manopt.jl

    Manopt.jl

    Optimization on Manifolds in Julia

    Optimization Algorithm on Riemannian Manifolds. A framework to implement arbitrary optimization algorithms on Riemannian Manifolds. Library of optimization algorithms on Riemannian manifolds. Easy-to-use interface for (debug) output and recording values during an algorithm run. Several tools to investigate the algorithms, gradients, and optimality criteria.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Deliver secure remote access with OpenVPN. Icon
    Deliver secure remote access with OpenVPN.

    Trusted by nearly 20,000 customers worldwide, and all major cloud providers.

    OpenVPN's products provide scalable, secure remote access — giving complete freedom to your employees to work outside the office while securely accessing SaaS, the internet, and company resources.
    Get started — no credit card required.
  • 10

    LightGBM

    Gradient boosting framework based on decision tree algorithms

    LightGBM or Light Gradient Boosting Machine is a high-performance, open source gradient boosting framework based on decision tree algorithms. Compared to other boosting frameworks, LightGBM offers several advantages in terms of speed, efficiency and accuracy. Parallel experiments have shown that LightGBM can attain linear speed-up through multiple machines for training in specific settings, all while consuming less memory. LightGBM supports parallel and GPU learning, and can handle large...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 11
    AWS Encryption SDK for Java
    The AWS Encryption SDK is a client-side encryption library designed to make it easy for everyone to encrypt and decrypt data using industry standards and best practices. It enables you to focus on the core functionality of your application, rather than on how to best encrypt and decrypt your data. The AWS Encryption SDK is provided free of charge under the Apache 2.0 license. With the AWS Encryption SDK, you define a master key provider (Java and Python) or a keyring (C, C#/.NET, and...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 12
    MegEngine

    MegEngine

    Easy-to-use deep learning framework with 3 key features

    MegEngine is a fast, scalable and easy-to-use deep learning framework with 3 key features. You can represent quantization/dynamic shape/image pre-processing and even derivation in one model. After training, just put everything into your model and inference it on any platform at ease. Speed and precision problems won't bother you anymore due to the same core inside. In training, GPU memory usage could go down to one-third at the cost of only one additional line, which enables the DTR algorithm...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 13
    MNN

    MNN

    MNN is a blazing fast, lightweight deep learning framework

    MNN is a highly efficient and lightweight deep learning framework. It supports inference and training of deep learning models, and has industry leading performance for inference and training on-device. At present, MNN has been integrated in more than 20 apps of Alibaba Inc, such as Taobao, Tmall, Youku, Dingtalk, Xianyu and etc., covering more than 70 usage scenarios such as live broadcast, short video capture, search recommendation, product searching by image, interactive marketing, equity...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 14
    Perceval

    Perceval

    An open source framework for programming photonic quantum computers

    An open-source framework for programming photonic quantum computers. Through a simple object-oriented Python API, Perceval provides tools for composing circuits from linear optical components, defining single-photon sources, manipulating Fock states, running simulations, reproducing published experimental papers and experimenting with a new generation of quantum algorithms. It aims to be a companion tool for developing photonic circuits – for simulating and optimizing their design, modeling...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Agno

    Agno

    Lightweight framework for building Agents with memory, knowledge, etc.

    Agno is a modular, open-source artificial general intelligence (AGI) research platform that allows developers to build, evaluate, and experiment with cognitive architectures in a composable way. It provides a flexible framework for modeling reasoning, memory, decision-making, and planning, aimed at long-term AI research beyond narrow learning. Agno embraces multi-agent environments and symbolic reasoning as part of its core design, enabling experiments with structured knowledge, goal-oriented...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 16
    MLJ.jl

    MLJ.jl

    A Julia machine learning framework

    MLJ (Machine Learning in Julia) is a toolbox written in Julia providing a common interface and meta-algorithms for selecting, tuning, evaluating, composing, and comparing about 200 machine learning models written in Julia and other languages. The functionality of MLJ is distributed over several repositories illustrated in the dependency chart below. These repositories live at the JuliaAI umbrella organization.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    GeoStats.jl

    GeoStats.jl

    An extensible framework for geospatial data science

    GeoStats.jl is an extensible, Julia-based framework for geospatial data science and geostatistical modeling, offering advanced geometric processing, spatial algorithms, and visualization tools tailored for geographic analysis. GeoStats.jl is an extensible framework for geospatial data science and geostatistical modeling fully written in Julia. It is comprised of several modules for advanced geometric processing, state-of-the-art geostatistical algorithms and sophisticated visualization...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Tequila

    Tequila

    A High-Level Abstraction Framework for Quantum Algorithms

    Tequila is an abstraction framework for (variational) quantum algorithms. It operates on abstract data structures allowing the formulation, combination, automatic differentiation and optimization of generalized objectives. Tequila can execute the underlying quantum expectation values on state-of-the-art simulators as well as on real quantum devices.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Agent S2

    Agent S2

    Agent S: an open agentic framework that uses computers like a human

    Simular's Agent S2 represents a leap forward in the development of computer-use agents, capable of autonomously interacting with a range of devices and interfaces. By integrating specialized AI models, Agent S2 delivers state-of-the-art performance, whether on desktop systems or smartphones. Through modular architecture, it efficiently handles complex tasks, such as navigating UIs, performing low-level actions like text selection, and executing high-level strategies like planning....
    Downloads: 1 This Week
    Last Update:
    See Project
  • 20
    XGBoost

    XGBoost

    Scalable and Flexible Gradient Boosting

    XGBoost is an optimized distributed gradient boosting library, designed to be scalable, flexible, portable and highly efficient. It supports regression, classification, ranking and user defined objectives, and runs on all major operating systems and cloud platforms. XGBoost works by implementing machine learning algorithms under the Gradient Boosting framework. It also offers parallel tree boosting (GBDT, GBRT or GBM) that can quickly and accurately solve many data science problems. XGBoost...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 21
    Ray

    Ray

    A unified framework for scalable computing

    ... model and reduce training costs by using the latest optimization algorithms. Deploy your machine learning models at scale with Ray Serve, a Python-first and framework agnostic model serving framework. Scale reinforcement learning (RL) with RLlib, a framework-agnostic RL library that ships with 30+ cutting-edge RL algorithms including A3C, DQN, and PPO. Easily build out scalable, distributed systems in Python with simple and composable primitives in Ray Core.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Python Outlier Detection

    Python Outlier Detection

    A Python toolbox for scalable outlier detection

    ... network-based models, e.g., AutoEncoders, which are implemented in both PyTorch and Tensorflow. PyOD contains multiple models that also exist in scikit-learn. It is possible to train and predict with a large number of detection models in PyOD by leveraging SUOD framework. A benchmark is supplied for select algorithms to provide an overview of the implemented models. In total, 17 benchmark datasets are used for comparison, which can be downloaded at ODDS.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    CPlusPlusThings

    CPlusPlusThings

    Collection of various C++ code samples, utilities, patterns

    CPlusPlusThings is a repository collecting various C++ code samples, utilities, patterns, and small example projects. It is less a polished product and more a learning/reference collection of snippets and usages of C++ idioms, data structures, algorithms, utilities, and perhaps tricks or meta-programming exercises. (No prominent README or detailed docs were available from my quick search.) Example implementations of data structures and algorithms. Organized as a learning repository (rather than...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Alibi Detect

    Alibi Detect

    Algorithms for outlier, adversarial and drift detection

    Alibi Detect is an open source Python library focused on outlier, adversarial and drift detection. The package aims to cover both online and offline detectors for tabular data, text, images and time series. Both TensorFlow and PyTorch backends are supported for drift detection.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    LightZero

    LightZero

    [NeurIPS 2023 Spotlight] LightZero

    LightZero is an efficient, scalable, and open-source framework implementing MuZero, a powerful model-based reinforcement learning algorithm that learns to predict rewards and transitions without explicit environment models. Developed by OpenDILab, LightZero focuses on providing a highly optimized and user-friendly platform for both academic research and industrial applications of MuZero and similar algorithms.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • 5
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.