Time-Evolving Block Decimation (TEBD) is a new method for efficiently simulating the dynamics of entangled quantum many-body systems. It is especially suited to one-dimensional systems governed by a Hamiltonian made of local interactions.
Open Source TEBD is a package, written in Fortran 95, which allows one to simulate the entangled quantum dynamics of a one-dimensional system governed by a Hamiltonian made of local interactions using TEBD. Expectation values and correlation functions, as well as entanglement measures and entropies, can be calculated. By propagating in imaginary time, TEBD can also be used to find the ground state of a given Hamiltonian. The code supports arbitrary internal degrees of freedom, and has been optimized to conserve total particle number. Accompanying the code is a user's guide which provides background on the theoretical and conceptual foundations of TEBD, manpages, case studies of well-known hamiltonians, and exercises.
Time-Evolving Block Decimation
TEBD simulates the dynamics of entangled quantum many-body systems.
Downloads:
1 This Week