

	

	Join/Login
	Open Source Software
	Business Software
	For Vendors
	Blog
	About
	More
	
	Articles
	Create
	Learn
	Site Documentation
	Subscribe to our Newsletter
	Support Request

For Vendors
Help
Create
Join
Login

Open Source Software

Business Software

Resources
	Articles
	Learn
	Blog

Menu
	Help
	Create
	Join
	Login

Paul Ciarlo PDFedit - Git

	

Profile

	

Activity

	

Wiki

	

Git ▾

	WSJT - WSPR
	WSJT - WSJT-X
	WSJT - WSPR-X
	WSJT - WSJT
	WSJT - Echo
	Ham Radio Control Libraries - Code
	rEFInd - Code
	GPT fdisk - Code
	UNetbootin - Code
	More...

Menu
▾
▴

	

Browse Commits

	

Fork

	

Merge Requests
0

Clone of

	

pdfedit / git

Branches

	

master

	

gui-devel

	

gui-jm

	

gui-staging

Tags

	

0.1.0

	

0.1.1

	

0.3.0

	

0.3.1

	

0.3.2

	

0.4.0

	

0.4.2

	

0.4.3

	

0.4.4

	

0.4.4.1

	

More Tags

Tree [5efb58]
master
 /

 Download Snapshot

 History

HTTPS

git://

HTTPS access

	File	Date	Author	Commit
	
 config
	

2010-02-23

	

Michal Hocko
	

[458fba]
configure: Add enable-tools option.

	
 doc
	

2011-11-03

	

Michal Hocko
	

[136ffb]
get rid of CVS remainings

	
 projects
	

2012-02-10

	

jm
	

[28f7f7]
releasenotes updated

	
 src
	

2013-02-17

	

Michal Hocko
	

[5efb58]
Follow up compile fixes

	
 testset
	

2011-08-04

	

Jozef Mišutka
	

[9e87a7]
personal

	
 tools
	

2011-11-03

	

Michal Hocko
	

[87e204]
makedist script refactoring

	
 .gitignore
	

2012-01-25

	

jm
	

[691909]
merging withou commit, merged with gui-staging,...

	
 COPYING
	

2008-02-21

	

Michal Hocko
	

[a85834]
license header fixed - Martin has noticed that ...

	
 Changelog
	

2011-02-18

	

Michal Hocko
	

[ee3e6c]
Patch grabed from poppler GIT tree and it fixes...

	
 FEATURES
	

2006-08-29

	

Martin Petříček
	

[fa6dc9]

	
 Makefile
	

2011-11-08

	

Michal Hocko
	

[96ccde]
build: add cscope target

	
 Makefile.flags.in
	

2012-01-25

	

jm
	

[62f6e9]
merging withou commit, merged with gui-staging,...

	
 Makefile.rules.in
	

2009-10-21

	

Michal Hocko
	

[7d8e10]
Replace suffix by pattern implicit rules

	
 README
	

2010-11-25

	

Michal Hocko
	

[14bc64]
doc: OpenSUSE build service repositories

	
 TODO
	

2008-09-24

	

Michal Hocko
	

[ee8e8a]
Test commit to find out if cvs log is delivered...

	
 configure.in
	

2012-01-25

	

jm
	

[62f6e9]
merging withou commit, merged with gui-staging,...

	
 dist-exclude
	

2011-11-03

	

Michal Hocko
	

[87e204]
makedist script refactoring

	
 getversion
	

2011-11-03

	

Michal Hocko
	

[893b2b]
Get rid of getversion -t parameter

	
 maintains
	

2008-04-04

	

Michal Hocko
	

[501029]
Merge with unified makefiles branch

	
 makedist
	

2011-11-03

	

Michal Hocko
	

[87e204]
makedist script refactoring

	
 version_exclude
	

2008-10-30

	

Michal Hocko
	

[be54f4]
From: mstsxfx@...

Read Me

PDFedit readme
==============

TOC
===
License
Contact
Prerequisites
	Base (kernel), pdfedit-core-dev package
	Tests
	Gui
Documentation
Configuration
	Configure features
	Libraries and binaries specification
	Installation directories
Compilation
Installation
Cygwin build
FreeBSD build
NetBSD installation
Debian package
RPM based distros
Gentoo package
Altlinux 64b
PDFedit devel package

License
=======
PDFedit is distributed under terms of GNU GPL in version 2.
See doc/LICENSE.GPL for full license text.
See doc/AUTHORS for full list of authors and contributors.
For other more detailed documentation, look into "doc" subdirectory.
File doc/user/user_doc.html contain more detailed installation instructions
(in the Installation section) and list of required libraries.

Contact
=======
Feel free to contact us with any question via our public
pdfedit-support@lists.sourceforge.net mailing list. Note that you have to
be subscribed if you want to post messages to the list (subscription form
is at https://lists.sourceforge.net/lists/listinfo/pdfedit-support).
Mailing list archive is public visible also without registration. Please
try to look into the archive before you post your question and append
an existing thread rather than create a new one.

If you want to be informed about important news you can register to the
pdfedit-news@lists.sourceforge.net mailing list. You can subscribe at
https://lists.sourceforge.net/lists/listinfo/pdfedit-news

All public mailing lists are listed at
http://sourceforge.net/mail/?group_id=177354

Prerequisites
=============
Base (kernel), pdfedit-code-dev package

Boost libraries must be installed. See detailed description about configure
parameters if you have some unusual installation.
Freetype library is almost necessary, because nearly all PDFs use these fonts.
T1 font library is also recommended.

Tests

Our tests are based on CPPUNIT library, so it has to be present on your
system. See detailed description about configure parameters if you have
some unusual installation.

Tools

All tools use boost-program-options library so it has to be installed on your
system if you want to compile them (see later how to enable them). Some
distributions use a separate package (e.g. Debian) but most others include
it directly into boost package.
add_image tool uses libpng and its headers so libpng-dev package has to be
installed.

Gui

Make sure you have all needed libraries (qt3, boost and xlib) along with their
headers.
You also need the environment variable QTDIR to be set to directory in which
the Qt toolkit (version 3) is installed. Many distributions already set this
when installing Qt, but some of them don't. In that case, you have to set the
QTDIR manually. Usually it is set to something like /usr/qt/3 or /usr/share/qt3
(use e. g. export QTDIR=/usr/share/qt3 to set the variable if this is your
case).
Also, while usually not needed, QMAKESPEC may be set to match your system type.
For most systems it is unnecessary to set it, although it may be needed if you
cross-compile (like producing i386 binaries on amd64 platform) or in some rare
configurations. Once you set QTDIR, you may try typing "ls $QTDIR/mkspecs".
QMAKESPEC should be set to name of one of the directories that are in mkspecs
subdirectory in the Qt directory.
See http://www.digitalfanatics.org/projects/qt_tutorial/chapter04.html or
http://doc.trolltech.com/3.0/qmake-guide.html for more information.
QTDIR is used also for qmake (tool for generating makefiles from QT project
files) detection. By default, this is stored somewhere under QTDIR directory
(typically QTDIR/bin/), but there are also platforms, where this is not
exactly true. If you have such a platform, try to use --with-qmake-dir
parameter to configure (see bellow)

Documentation
=============
There are 3 levels of documentation in this project.
* Basic - in the form of the man page which is always installed
* doxygen - programming documentation extracted from sources and
	 processed by doxygen tool. Obviously, doxygen has to
	 be installed.
	 This documentation is not created and installed by
	 default and you have to explicitly enable it by
	 --enable-doxygen-doc parameter to ./configure
	 Result documentation is placed in the DOC_PATH/doxygen
	 directory (DOC_PATH is PREFIX/share/doc/pdfedit)
	 It is strongly recommended for pdfedit-core-dev package
	 done by distributors.
* user manual - html pages with user manual about PDFedit usage.
	 This documentation is not created by default and you
	 have to enable it by configure parameter
	 --enable-user-manual. We are using xml based docbook
	 format, so you have to have docbook xsl and xsltproc
	 installed.
	 Result documentation is placed in the DOC_PATH/manual
	 directory.
* advanced - design documentation which describes inner data
	 structures, algorithms and relations from the
	 programmer perspective. This one is useful if you
	 want to develop PDFedit or 3rd party application based
	 on PDFedit.
	 This documentation is not created by default too and
	 you have to enable it by configure parameter
	 --enable-advanced-doc. We are using xml based docbook
	 format, so you have to have docbook xsl and xsltproc
	 installed.
	 Result documentation is placed in the DOC_PATH/design/
	 directory.

Configuration
=============
 Run:
 ./configure [parameters]

NOTE for those who use sources from CVS. configure is NO MORE part of the
CVS tree!!! You have to generate it. This can be done simply by
$ autoconf
in the root of the checkout project. Note that you have to have autoconf
package installed on your machine.

Simple run without any parameter results in default configuration where
application is compiled in release mode (optimizations turned on, debug
symbols are not present, compilation warnings are eliminated), GUI is
enabled, doxygen documentation is generated, no kernel tests (stored in
src/kernel/tests/) are compiled and application will be installed into the
/usr/local/pdfedit directory.

Configuration enables also compilation and installation in so called
pdfedit-core-dev package which prepares all libraries and header files for
3rd party application which want to reuse our core (kernel) functionality
(see more in the Pdfedit devel package bellow).
This is not done by default and you have to enable it explicitly by
--enable-pdfedit-dev-core configure parameter.
Note that development package and gui can be mixed together but also single
dev. package can be created by disabling gui (see bellow).
pdfedit-dev-core installation comes with pdfedit-core-dev-config script
which can be used by 3rd party code for its configuration to correctly set
compiler flags include paths, libraries and so on.

Configure features

You can change this behavior with following parameters (feature is used
if --enable- prefix is used, contrary --disable- prefix turns off this
feature - e.g. if feature name stack-protector => --enable-stack-protector
uses this feature):
	-stack-protector - adds stack protector parameter to the compilation
	 flags. Disabled by default, because not all compilers support this
	 feature (gcc > 4.1 supports it)

	-release - controls compilation flags for release mode (no debugging
	 needed). This is used by default. It means that optimizations are
	 turned on, debug information is not included in the result binary.
	 If you want to debug or do some development, --disable-release is
	 strongly recommended.

	-debug-info - if --enable-release is used and you still need debug
	 information (e.g. when application crashes to have some reasonable
	 stack traces) use --enable-debug-info. This parameter feature would
	 be ignored if --disable-release is used.
	
	-observer-debug - just for developers only. Disabled by default. If
	 turned on, some more debug information is added to the kernel code
	 to enable debugging observers based code.

	-gui - Creates GUI for PDFedit (pdfedit binary). Enabled by default.
	 If --disable-gui is used, no GUI (no pdfedit binary is created).
	
	-kernel-tests - Compiles all kernel tests (in src/kernel/tests).
	 Disabled by default and intended for developers/testers only. Note
	 that this requires to have CPPUNIT installed on your system.

	-tools - Compiles all tools which are available in src/tools. Disabled
	 by default and intended for those interested in simple examples of
	 pdfedit-core-dev library usage and those who need some simple tools for
	 pdf manipulation/analyzes and don't want to use GUI or scripting
	 (pdf_to_text, flattener, delinerizator, pdf_object_comparer, etc.).
	 Note that you need also --enable-pdfedit-core-dev for tools.
	
	-doxygen-doc - generates also doxygen documentation useful for
	 programmers. Disabled by default. Note that doxygen has to be
	 installed for this feature.

	-user-manual - generates also docbook user manual documentation.
	 Disabled by default. Note that docbook and its prerequisites
	 have to be installed for this feature.

	-advanced-doc - generates also docbook design documentation.
	 Disabled by default. Note that docbook and its prerequisites
	 have to be installed for this feature.
	
	-pdfedit-core-dev - generates libraries needed for 3rd party
	 applications which want to use pdfedit kernel core. Moreover
	 make install will install also header files, libraries and
	 pdfedit-core-dev-config helper script (see Installation directories
	 bellow). This option is disabled by default.
	-poratability-flags - adds compiler flags which force c99/c++98
	 standard and posix/ansi portability. This option is enabled by default.

Default configuration process will check for the number of CPUs/cores and
use this value for make jobs parallelization (each make will use different
CPU/core). You can change this behavior with --with-parallel-make=VALUE
where VALUE is one of the:
	- auto (default) - (on Linux - checks /proc/cpuinfo and use the CPU
	 counts for the number of parallel make jobs).
	- off - no parallelization
	- number - the number of parallel make jobs (positive number
	 expected)
Default behavior (no need for --with-parallel-make parameter) should be OK
in almost all situations (with benefit of shorter built time), however if
you have specific requirements when you don't want/can't use all your
CPUs/cores for compilation you can use either off or precise number of
parallel jobs.

Libraries and binaries specification

You can also control search paths for required libraries and binaries:

	- Freetype2 font library
	./configure --with-ft-prefix=PATH_TO_YOUR_FREETYPE2
	resp. (for T1)
	
	- T1 font library
	./configure --with-t1-includes=PATH_TO_YOUR_T1_HEADERS \
		--with-t1-library=PATH_TO_YOUR_T1_LIB
	
	- CPPUnit
	./configure --with-cppunit-prefix=PATH_TO_YOUR_CPPUNIT

	- Boost
	./configure --with-boost=YOUR_BOOST_INSTALLATION_PATH \
		--with-boost-libdir=YOUR_BOOST_LIB_PATH

	- qmake is searched in $QTDIR/bin, /usr/bin, /usr/local/bin,
	 /usr/lib/qt3/bin and in directories in $PATH. If you have
	 qmake installed in other directory, use:
	./configure --with-qmake=QMAKE_BINARY_WITH_PATH

	- QT comes with lrelease binary which is used for
	 localization data files translation. This binary is
	 searched in $QTDIR/bin, /usr/bin, /usr/local/bin,
	 /usr/lib/qt3/bin and in directories in $PATH.
	 If it is not found on your system, please use
	./configure --with-lrelease-bin=LRELEASE_BINARY_WITH_PATH

	- doxygen is searched in /usr/bin , /usr/local/bin and
	 current PATH directories. If you have doxygen installed
	 in other directory, use:
	./configure --with-doxygen=DOXYGEN_BINARY_WITH_PATH

	- xsltproc is searched in /usr/bin , /usr/local/bin and
	 current PATH directories. If you have xsltproc installed
	 in other directory, use:
	./configure --with-xsltproc=XSLTPROC_BINARY_WITH_PATH

	- docbook xslt files are necessary for xsltproc to generate
	 correct output from docbook xml files. There are many
	 places where these files can be found. As many systems
	 use different directories and there is no general way
	 to detect, we are using file doc/tools/docbook_xslt_paths
	 to define all possible directories which are searched.
	 If you are sure that you have installed package with
	 this file (usually stored ...html/dobook.xsl) add its
	 absolute path to this file (each directory should be on the
	 separate line and can use wildchars). If you report missing
	 directory for your platform, we can add it in the next release.

See ./configure --help for more information about this parameters.

Installation directories

All files are by default installed under /usr/local subdirectory (binary
into /usr/local/bin, config files into /usr/local/share/pdfedit etc.).
This location can be changed by --prefix parameter to configure (PREFIX
in the following).

PDFedit binary location can be controlled by --exec-prefix (EPREFIX in
the following) and it is stored under EPREFIX/bin. EPREFIX is the
same like PREFIX by default.

Documentation files are copied to PREFIX/share/pdfedit/doc, configuration
files and scripts are copied to PREFIX/share/pdfedit and man page is
copied to PREFIX/share/man/man1.

If pdfedit-core-dev is configured, all relevant header files are copied into
INCLUDEDIR/pdfedit-version (INCLUDEDIR=PREFIX/include by default), static
libraries are copied into LIBDIR/pdfedit-version (LIBDIR=EPREFIX/lib by
default) and pdfedit-core-dev-config script copied into the binary path as
described for PDFedit bunary.

If you need to change installation root (e. g. if you are packager and
want to create package or use chrooted environment) use
	--with-root-dir=YOUR_INSTALLATION_ROOT_DIR
Everything will then be installed with complete directory structure relative
to that directory instead of real root directory (using correct PREFIX and
EPREFIX of course). Note that you cannot just execute PDFedit from that
directory straight away, as the files must be present in real root directory
for editor to function properly.
If you want just to move the installation elsewhere (in your home directory,
for example), use --prefix parameter for that.

Installation directories for specific parts (binary, documentation,
configuration files) can be also controlled by configure parameters.
	--bindir controls directory where the pdfedit binary is copied
	--libdir controls directory where the pdfedit-core-dev libraries are
	 installed
	--includedir controls directory where the pdfedit-core-dev header
	 files are installed
	--docdir controls directory where documentation is copied
	--mandir controls directory where the man page is copied. Note that
	 we provide only man 1 pdfedit, so that man page is actually copied
	 under man1 sub-directory under specified one.
	--datadir controls directory where configuration files are stored
	 (files are actually stored in pdfedit package name subdirectory)

You can use following variables if you want to customize above directories:
	prefix - value set as --prefix (usually /usr/local)
	exec_prefix - value set as --exec_prefix (usually same as PREFIX)
	datarootdir - root directory for all pdfedit data (usually PREFIX/share)
	version - current version
	package_name - installed package name

Example for multiple simultaneous versions installation:
	# Note that quotes are necessary here because bash (and some other
	# shells may too) would run subshell for $(expression) otherwise
	# Also note that man page will be overwritten by each installation.
	./configure --bindir='$(exec_prefix)/$(package_name)-$(version)' \
		--docdir='$(datarootdir)/doc/$(package_name)-$(version)' \
		--datadir='$(datarootdir)/$(package_name)-$(version)'

Compilation
===========

After configure successfully finishes, run "make" in this directory to start
compilation (note that GNU make is preferred bacause we are using some GNU
make features which might be not available with other make implementations).

If you need (for what ever reason) to change or explicitly specify other than
default compiler, you can do it during configuration phase by passing your
compiler as CC and CXX configure parameters. The first one stands for c files
compiler while the second is used for c++ files.
Lets say that we have gcc v 4.2 as default and want to compile with the newest
gcc 4.3. Then you should do something like (name of compiler binary may
vary on different systems - this one is for Debian):
	./configure CC=gcc-4.3 CXX=g++-4.3

Note that CFLAGS and CXXFLAGS which can be standardly passed to configure
are ignored by our configure script.

However you can influence compiler parameters with the following variables:
	- ARCH for architecture specific parameters
	- C_EXTRA for CC flags
	 (-fmessage-length=0 -D_FORTIFY_SOURCE=2 -fno-strict-aliasing will
	 be used if not defined)
	- CXX_EXTRA for CXX flags
	 (-fmessage-length=0 -D_FORTIFY_SOURCE=2 -fno-strict-aliasing -fexceptions
	 will be used if not defined)
	- EXTRA_UTILS_CFLAGS, EXTRA_KERNEL_CFLAGS, EXTRA_TESTS_CFLAGS, EXTRA_XPDF_CFLAGS
	 used for CC flags for utils resp. kernel resp. tests directory (only
	 for internal/developers usage)
	- EXTRA_UTILS_CXXFLAGS, EXTRA_KERNEL_CXXFLAGS, EXTRA_TESTS_CXXFLAGS,
	 EXTRA_GUI_CXXFLAGS, EXTRA_XPDF_CXXFLAGS same like the above for CXX

Installation
============
 To install editor, run
 make install

Note that all files will be installed according to defined prefix and
if --with-root-dir was specified for configure, then prefix is relative
to the specified root.

Cygwin build
============
PATH in cygwin must contain these three directories
/bin			(most required executables are stashed here)
/usr/X11R6/bin		(some libraries are here)
/usr/lib/qt3/bin	(qmake must be in PATH)

You can use cygwin_build.bat to start the build process (you will need
to set CYGWIN_ROOT in the file first). This will create the package in
/tmp/pdfedit-package and create pack.bat to pack the package with 7-zip

Please note that we have received reports about PDFedit failing to compile
under some Cygwin releases. The problem turned out to be related to
implementation of c++ standard wrt. to some functions definitions (e.g. mkstemp)
under Cygwin.
The only reasonable solution is turning off portability and c/c++ standards
compiler flags. Please use --enable-portability-flags=no if you encounters
these problems.

FreeBSD build
=============
Here is the short howto for PDFedit compilation and installation on FreeBSD 6.2
(Qt 3.38, Xorg 7.2). Thanks to Hao Chen.

untar current sources (this was done for 0.3.1 version)
tar zxvf pdfedit-0.3.1.tar.bz2
cd pdfedit-0.3.1
setenv QTDIR /usr/local
setenv QMAKESPEC /usr/local/share/qt/mkspecs/freebsd-g++
setenv LOCALBASE /usr/local
./configure --with-t1-library="${LOCALBASE}/lib" \
	--with-t1-includes="${LOCALBASE}/include"

#make sure you see this:
#checking for T1_InitLib in -lt1... yes
#using t1 library

Our makefiles use some extensions of GNU make, so it is recomended to use
gmake instead!

NetBSD installation
===================
Package for NetBSD is available on http://pkgsrc.se/wip/pdfedit

Debian package
==============
The package for the Debian is in testing branch at the moment.
See http://packages.debian.org/unstable/utils/pdfedit

The package for the Ubuntu can by found at
http://packages.ubuntu.com/gutsy/utils/pdfedit

And if you want to create deb package by your self, Eric Doviak
(thanks for this howto) suggests:

First, install the packages necessary to build PDF Editor.

apt-get install dh-make libboost-dev

Then, download the tarball from Sourceforge and extracted the files:

$ tar -zxf pdfedit_0.4.1.tar.gz

Next, enter the pdfedit-0.4.1/ directory and run dh_make

$ cd pdfedit-0.4.1/
$ dh_make --createorig

Choose to create a single binary. After running dh_make, open the
pdfedit-0.4.1/debian/rules file and comment out (#) line 48:

$(MAKE) distclean

Then, run:

$ export QTDIR=/usr/share/qt3
$ dpkg-buildpackage

That creates the DEB package that you can install with:

dpkg -i pdfedit_0.4.1-1_i386.deb

RPM based distros
=================
* OpenSUSE provides package via the Packman repository
 (http://ftp.skynet.be/pub/packman/suse/10.3/)
 Build service access - https://build.opensuse.org/package/show?package=pdfedit&project=KDE%3AKDE3
* Package for Mandriva can be obtained from http://rpmlinux.org

Gentoo package
==============
Package is available on sunrise overlay repository
which should be available in following way:

emerge -va layman
echo "source /usr/portage/local/layman/make.conf" >> /etc/make.conf
layman -f -a sunrise

pdfedit is then installed by:
ACCEPT_KEYWORDS=~x86 emerge -av pdfedit

Altlinux 64b
============
Altlinux has boost libraries stored in /usr/lib64 directory. This
directory is not searched by default. Therefore you have to set
library path by hand with --with-boost-libdir=/usr/lib64.

PDFedit devel package
=====================
PDFedit core functionality (read as non-gui) can be reused by 3rd party
applications. For this purpose, we have provided separate configuration
options and installation targets as described above.
If you want to use this package following steps are required:
* install pdfedit-core-dev package (either from distribution package if
 available or from sources as described above).
* There are two possibilities to properly setup compiler and linker flags
 to compile your application correctly.
 - manual Makefile way
 You should use EPREFIX/pdfedit-core-dev-config script
	e.g. this way in Makefile:
	CXXFLAGS = $(shell pdfedit-core-dev-config --cflags)
	LDFLAGS = $(shell pdfedit-core-dev-config --libs)

 - autoconf way
 pdfedit source package comes with the config/pdfedit-core-dev.m4 autoconf
 macro file which exports AX_PDFEDIT_CORE_DEV macro. Just call it and use
 the exported variables PDFEDIT_CORE_DEV_CPPFLAGS and PDFEDIT_CODE_DEV_LDFLAGS
 in your Makefile. Read more about possible parameters directly in the file.
* update your sources which are using pdfedit-core-dev:
	- initialize library by:
	if(pdfedit_core_dev_init())
	{
		// Fatal error in initialization
		exit();
	}
	before you call any PDFedit related code
	- cleanup library stuff at the end when pdfedit-core-dev is no
	 longer used by:
	pdfedit_core_dev_destroy();
 [See doxygen documentation for these functions for more information]

SourceForge

	Create a Project
	Open Source Software
	Business Software
	Top Downloaded Projects

Company

	About
	Team
	

SourceForge Headquarters

225 Broadway Suite 1600

San Diego, CA 92101

+1 (858) 454-5900

	

Resources

	Support
	Site Documentation
	Site Status

© 2024 Slashdot Media. All Rights Reserved.

Do Not Sell or Share My Personal Information

×

Terms
Privacy
Advertise

