Compare the Top Vector Databases that integrate with PyTorch as of July 2025

This a list of Vector Databases that integrate with PyTorch. Use the filters on the left to add additional filters for products that have integrations with PyTorch. View the products that work with PyTorch in the table below.

What are Vector Databases for PyTorch?

Vector databases are a type of database that use vector-based data structures, rather than the traditional relational models, to store information. They are used in artificial intelligence (AI) applications such as machine learning, natural language processing and image recognition. Vector databases support fast and efficient data storage and retrieval processes, making them an ideal choice for AI use cases. They also enable the integration of structured and unstructured datasets into a single system, offering enhanced scalability for complex projects. Compare and read user reviews of the best Vector Databases for PyTorch currently available using the table below. This list is updated regularly.

  • 1
    Zilliz Cloud
    Zilliz Cloud is a fully managed vector database based on the popular open-source Milvus. Zilliz Cloud helps to unlock high-performance similarity searches with no previous experience or extra effort needed for infrastructure management. It is ultra-fast and enables 10x faster vector retrieval, a feat unparalleled by any other vector database management system. Zilliz includes support for multiple vector search indexes, built-in filtering, and complete data encryption in transit, a requirement for enterprise-grade applications. Zilliz is a cost-effective way to build similarity search, recommender systems, and anomaly detection into applications to keep that competitive edge.
    Starting Price: $0
  • 2
    Deep Lake

    Deep Lake

    activeloop

    Generative AI may be new, but we've been building for this day for the past 5 years. Deep Lake thus combines the power of both data lakes and vector databases to build and fine-tune enterprise-grade, LLM-based solutions, and iteratively improve them over time. Vector search does not resolve retrieval. To solve it, you need a serverless query for multi-modal data, including embeddings or metadata. Filter, search, & more from the cloud or your laptop. Visualize and understand your data, as well as the embeddings. Track & compare versions over time to improve your data & your model. Competitive businesses are not built on OpenAI APIs. Fine-tune your LLMs on your data. Efficiently stream data from remote storage to the GPUs as models are trained. Deep Lake datasets are visualized right in your browser or Jupyter Notebook. Instantly retrieve different versions of your data, materialize new datasets via queries on the fly, and stream them to PyTorch or TensorFlow.
    Starting Price: $995 per month
  • 3
    ApertureDB

    ApertureDB

    ApertureDB

    Build your competitive edge with the power of vector search. Streamline your AI/ML pipeline workflows, reduce infrastructure costs, and stay ahead of the curve with up to 10x faster time-to-market. Break free of data silos with ApertureDB's unified multimodal data management, freeing your AI teams to innovate. Set up and scale complex multimodal data infrastructure for billions of objects across your entire enterprise in days, not months. Unifying multimodal data, advanced vector search, and innovative knowledge graph with a powerful query engine to build AI applications faster at enterprise scale. ApertureDB can enhance the productivity of your AI/ML teams and accelerate returns from AI investment with all your data. Try it for free or schedule a demo to see it in action. Find relevant images based on labels, geolocation, and regions of interest. Prepare large-scale multi-modal medical scans for ML and clinical studies.
    Starting Price: $0.33 per hour
  • 4
    SuperDuperDB

    SuperDuperDB

    SuperDuperDB

    Build and manage AI applications easily without needing to move your data to complex pipelines and specialized vector databases. Integrate AI and vector search directly with your database including real-time inference and model training. A single scalable deployment of all your AI models and APIs which is automatically kept up-to-date as new data is processed immediately. No need to introduce an additional database and duplicate your data to use vector search and build on top of it. SuperDuperDB enables vector search in your existing database. Integrate and combine models from Sklearn, PyTorch, and HuggingFace with AI APIs such as OpenAI to build even the most complex AI applications and workflows. Deploy all your AI models to automatically compute outputs (inference) in your datastore in a single environment with simple Python commands.
  • Previous
  • You're on page 1
  • Next