Compare the Top Vector Databases that integrate with OmniMind as of November 2025

This a list of Vector Databases that integrate with OmniMind. Use the filters on the left to add additional filters for products that have integrations with OmniMind. View the products that work with OmniMind in the table below.

What are Vector Databases for OmniMind?

Vector databases are a type of database that use vector-based data structures, rather than the traditional relational models, to store information. They are used in artificial intelligence (AI) applications such as machine learning, natural language processing and image recognition. Vector databases support fast and efficient data storage and retrieval processes, making them an ideal choice for AI use cases. They also enable the integration of structured and unstructured datasets into a single system, offering enhanced scalability for complex projects. Compare and read user reviews of the best Vector Databases for OmniMind currently available using the table below. This list is updated regularly.

  • 1
    Weaviate

    Weaviate

    Weaviate

    Weaviate is an open-source vector database. It allows you to store data objects and vector embeddings from your favorite ML-models, and scale seamlessly into billions of data objects. Whether you bring your own vectors or use one of the vectorization modules, you can index billions of data objects to search through. Combine multiple search techniques, such as keyword-based and vector search, to provide state-of-the-art search experiences. Improve your search results by piping them through LLM models like GPT-3 to create next-gen search experiences. Beyond search, Weaviate's next-gen vector database can power a wide range of innovative apps. Perform lightning-fast pure vector similarity search over raw vectors or data objects, even with filters. Combine keyword-based search with vector search techniques for state-of-the-art results. Use any generative model in combination with your data, for example to do Q&A over your dataset.
    Starting Price: Free
  • 2
    Supabase

    Supabase

    Supabase

    Create a backend in less than 2 minutes. Start your project with a Postgres database, authentication, instant APIs, real-time subscriptions and storage. Build faster and focus on your products. Every project is a full Postgres database, the world's most trusted relational database. Add user sign-ups and logins, securing your data with Row Level Security. Store, organize and serve large files. Any media, including videos and images. Write custom code and cron jobs without deploying or scaling servers. There are many example apps and starter projects to get going. We introspect your database to provide APIs instantly. Stop building repetitive CRUD endpoints and focus on your product. Type definitions built directly from your database schema. Use Supabase in the browser without a build process. Develop locally and push to production when you're ready. Manage Supabase projects from your local machine.
    Starting Price: $25 per month
  • 3
    Pinecone

    Pinecone

    Pinecone

    The AI Knowledge Platform. The Pinecone Database, Inference, and Assistant make building high-performance vector search apps easy. Developer-friendly, fully managed, and easily scalable without infrastructure hassles. Once you have vector embeddings, manage and search through them in Pinecone to power semantic search, recommenders, and other applications that rely on relevant information retrieval. Ultra-low query latency, even with billions of items. Give users a great experience. Live index updates when you add, edit, or delete data. Your data is ready right away. Combine vector search with metadata filters for more relevant and faster results. Launch, use, and scale your vector search service with our easy API, without worrying about infrastructure or algorithms. We'll keep it running smoothly and securely.
  • 4
    Qdrant

    Qdrant

    Qdrant

    Qdrant is a vector similarity engine & vector database. It deploys as an API service providing search for the nearest high-dimensional vectors. With Qdrant, embeddings or neural network encoders can be turned into full-fledged applications for matching, searching, recommending, and much more! Provides the OpenAPI v3 specification to generate a client library in almost any programming language. Alternatively utilise ready-made client for Python or other programming languages with additional functionality. Implement a unique custom modification of the HNSW algorithm for Approximate Nearest Neighbor Search. Search with a State-of-the-Art speed and apply search filters without compromising on results. Support additional payload associated with vectors. Not only stores payload but also allows filter results based on payload values.
  • Previous
  • You're on page 1
  • Next