Compare the Top Vector Databases that integrate with Go as of July 2025

This a list of Vector Databases that integrate with Go. Use the filters on the left to add additional filters for products that have integrations with Go. View the products that work with Go in the table below.

What are Vector Databases for Go?

Vector databases are a type of database that use vector-based data structures, rather than the traditional relational models, to store information. They are used in artificial intelligence (AI) applications such as machine learning, natural language processing and image recognition. Vector databases support fast and efficient data storage and retrieval processes, making them an ideal choice for AI use cases. They also enable the integration of structured and unstructured datasets into a single system, offering enhanced scalability for complex projects. Compare and read user reviews of the best Vector Databases for Go currently available using the table below. This list is updated regularly.

  • 1
    Vald

    Vald

    Vald

    Vald is a highly scalable distributed fast approximate nearest neighbor dense vector search engine. Vald is designed and implemented based on the Cloud-Native architecture. It uses the fastest ANN Algorithm NGT to search neighbors. Vald has automatic vector indexing and index backup, and horizontal scaling which made for searching from billions of feature vector data. Vald is easy to use, feature-rich and highly customizable as you needed. Usually the graph requires locking during indexing, which cause stop-the-world. But Vald uses distributed index graph so it continues to work during indexing. Vald implements its own highly customizable Ingress/Egress filter. Which can be configured to fit the gRPC interface. Horizontal scalable on memory and cpu for your demand. Vald supports to auto backup feature using Object Storage or Persistent Volume which enables disaster recovery.
    Starting Price: Free
  • 2
    txtai

    txtai

    NeuML

    txtai is an all-in-one open source embeddings database designed for semantic search, large language model orchestration, and language model workflows. It unifies vector indexes (both sparse and dense), graph networks, and relational databases, providing a robust foundation for vector search and serving as a powerful knowledge source for LLM applications. With txtai, users can build autonomous agents, implement retrieval augmented generation processes, and develop multi-modal workflows. Key features include vector search with SQL support, object storage integration, topic modeling, graph analysis, and multimodal indexing capabilities. It supports the creation of embeddings for various data types, including text, documents, audio, images, and video. Additionally, txtai offers pipelines powered by language models that handle tasks such as LLM prompting, question-answering, labeling, transcription, translation, and summarization.
    Starting Price: Free
  • Previous
  • You're on page 1
  • Next