Compare the Top Vector Databases that integrate with Docker as of July 2025

This a list of Vector Databases that integrate with Docker. Use the filters on the left to add additional filters for products that have integrations with Docker. View the products that work with Docker in the table below.

What are Vector Databases for Docker?

Vector databases are a type of database that use vector-based data structures, rather than the traditional relational models, to store information. They are used in artificial intelligence (AI) applications such as machine learning, natural language processing and image recognition. Vector databases support fast and efficient data storage and retrieval processes, making them an ideal choice for AI use cases. They also enable the integration of structured and unstructured datasets into a single system, offering enhanced scalability for complex projects. Compare and read user reviews of the best Vector Databases for Docker currently available using the table below. This list is updated regularly.

  • 1
    Milvus

    Milvus

    Zilliz

    Vector database built for scalable similarity search. Open-source, highly scalable, and blazing fast. Store, index, and manage massive embedding vectors generated by deep neural networks and other machine learning (ML) models. With Milvus vector database, you can create a large-scale similarity search service in less than a minute. Simple and intuitive SDKs are also available for a variety of different languages. Milvus is hardware efficient and provides advanced indexing algorithms, achieving a 10x performance boost in retrieval speed. Milvus vector database has been battle-tested by over a thousand enterprise users in a variety of use cases. With extensive isolation of individual system components, Milvus is highly resilient and reliable. The distributed and high-throughput nature of Milvus makes it a natural fit for serving large-scale vector data. Milvus vector database adopts a systemic approach to cloud-nativity, separating compute from storage.
    Starting Price: Free
  • 2
    Vald

    Vald

    Vald

    Vald is a highly scalable distributed fast approximate nearest neighbor dense vector search engine. Vald is designed and implemented based on the Cloud-Native architecture. It uses the fastest ANN Algorithm NGT to search neighbors. Vald has automatic vector indexing and index backup, and horizontal scaling which made for searching from billions of feature vector data. Vald is easy to use, feature-rich and highly customizable as you needed. Usually the graph requires locking during indexing, which cause stop-the-world. But Vald uses distributed index graph so it continues to work during indexing. Vald implements its own highly customizable Ingress/Egress filter. Which can be configured to fit the gRPC interface. Horizontal scalable on memory and cpu for your demand. Vald supports to auto backup feature using Object Storage or Persistent Volume which enables disaster recovery.
    Starting Price: Free
  • 3
    Marqo

    Marqo

    Marqo

    Marqo is more than a vector database, it's an end-to-end vector search engine. Vector generation, storage, and retrieval are handled out of the box through a single API. No need to bring your own embeddings. Accelerate your development cycle with Marqo. Index documents and begin searching in just a few lines of code. Create multimodal indexes and search combinations of images and text with ease. Choose from a range of open source models or bring your own. Build interesting and complex queries with ease. With Marqo you can compose queries with multiple weighted components. With Marqo, input pre-processing, machine learning inference, and storage are all included out of the box. Run Marqo in a Docker image on your laptop or scale it up to dozens of GPU inference nodes in the cloud. Marqo can be scaled to provide low-latency searches against multi-terabyte indexes. Marqo helps you configure deep-learning models like CLIP to pull semantic meaning from images.
    Starting Price: $86.58 per month
  • 4
    ApertureDB

    ApertureDB

    ApertureDB

    Build your competitive edge with the power of vector search. Streamline your AI/ML pipeline workflows, reduce infrastructure costs, and stay ahead of the curve with up to 10x faster time-to-market. Break free of data silos with ApertureDB's unified multimodal data management, freeing your AI teams to innovate. Set up and scale complex multimodal data infrastructure for billions of objects across your entire enterprise in days, not months. Unifying multimodal data, advanced vector search, and innovative knowledge graph with a powerful query engine to build AI applications faster at enterprise scale. ApertureDB can enhance the productivity of your AI/ML teams and accelerate returns from AI investment with all your data. Try it for free or schedule a demo to see it in action. Find relevant images based on labels, geolocation, and regions of interest. Prepare large-scale multi-modal medical scans for ML and clinical studies.
    Starting Price: $0.33 per hour
  • 5
    txtai

    txtai

    NeuML

    txtai is an all-in-one open source embeddings database designed for semantic search, large language model orchestration, and language model workflows. It unifies vector indexes (both sparse and dense), graph networks, and relational databases, providing a robust foundation for vector search and serving as a powerful knowledge source for LLM applications. With txtai, users can build autonomous agents, implement retrieval augmented generation processes, and develop multi-modal workflows. Key features include vector search with SQL support, object storage integration, topic modeling, graph analysis, and multimodal indexing capabilities. It supports the creation of embeddings for various data types, including text, documents, audio, images, and video. Additionally, txtai offers pipelines powered by language models that handle tasks such as LLM prompting, question-answering, labeling, transcription, translation, and summarization.
    Starting Price: Free
  • 6
    Supabase

    Supabase

    Supabase

    Create a backend in less than 2 minutes. Start your project with a Postgres database, authentication, instant APIs, real-time subscriptions and storage. Build faster and focus on your products. Every project is a full Postgres database, the world's most trusted relational database. Add user sign-ups and logins, securing your data with Row Level Security. Store, organize and serve large files. Any media, including videos and images. Write custom code and cron jobs without deploying or scaling servers. There are many example apps and starter projects to get going. We introspect your database to provide APIs instantly. Stop building repetitive CRUD endpoints and focus on your product. Type definitions built directly from your database schema. Use Supabase in the browser without a build process. Develop locally and push to production when you're ready. Manage Supabase projects from your local machine.
    Starting Price: $25 per month
  • Previous
  • You're on page 1
  • Next