Compare the Top Time Series Databases that integrate with Snowflake as of November 2025

This a list of Time Series Databases that integrate with Snowflake. Use the filters on the left to add additional filters for products that have integrations with Snowflake. View the products that work with Snowflake in the table below.

What are Time Series Databases for Snowflake?

Time series databases (TSDB) are databases designed to store time series and time-stamped data as pairs of times and values. Time series databases are useful for easily managing and analyzing time series. Compare and read user reviews of the best Time Series Databases for Snowflake currently available using the table below. This list is updated regularly.

  • 1
    Tiger Data

    Tiger Data

    Tiger Data

    Tiger Data is the creator of TimescaleDB, the world’s leading PostgreSQL-based time-series and analytics database. It provides a modern data platform purpose-built for developers, devices, and AI agents. Designed to extend PostgreSQL beyond traditional limits, Tiger Data offers built-in primitives for time-series data, search, materialization, and scale. With features like auto-partitioning, hybrid storage, and compression, it helps teams query billions of rows in milliseconds while cutting infrastructure costs. Tiger Cloud delivers these capabilities as a fully managed, elastic environment with enterprise-grade security and compliance. Trusted by innovators like Cloudflare, Toyota, Polymarket, and Hugging Face, Tiger Data powers real-time analytics, observability, and intelligent automation across industries.
    Starting Price: $30 per month
  • 2
    kdb Insights
    kdb Insights is a cloud-native, high-performance analytics platform designed for real-time analysis of both streaming and historical data. It enables intelligent decision-making regardless of data volume or velocity, offering unmatched price and performance, and delivering analytics up to 100 times faster at 10% of the cost compared to other solutions. The platform supports interactive data visualization through real-time dashboards, facilitating instantaneous insights and decision-making. It also integrates machine learning models to predict, cluster, detect patterns, and score structured data, enhancing AI capabilities on time-series datasets. With supreme scalability, kdb Insights handles extensive real-time and historical data, proven at volumes of up to 110 terabytes per day. Its quick setup and simple data intake accelerate time-to-value, while native support for q, SQL, and Python, along with compatibility with other languages via RESTful APIs.
  • Previous
  • You're on page 1
  • Next