Compare the Top Time Series Databases that integrate with PostgreSQL as of June 2025

This a list of Time Series Databases that integrate with PostgreSQL. Use the filters on the left to add additional filters for products that have integrations with PostgreSQL. View the products that work with PostgreSQL in the table below.

What are Time Series Databases for PostgreSQL?

Time series databases (TSDB) are databases designed to store time series and time-stamped data as pairs of times and values. Time series databases are useful for easily managing and analyzing time series. Compare and read user reviews of the best Time Series Databases for PostgreSQL currently available using the table below. This list is updated regularly.

  • 1
    InfluxDB

    InfluxDB

    InfluxData

    InfluxDB is a purpose-built data platform designed to handle all time series data, from users, sensors, applications and infrastructure — seamlessly collecting, storing, visualizing, and turning insight into action. With a library of more than 250 open source Telegraf plugins, importing and monitoring data from any system is easy. InfluxDB empowers developers to build transformative IoT, monitoring and analytics services and applications. InfluxDB’s flexible architecture fits any implementation — whether in the cloud, at the edge or on-premises — and its versatility, accessibility and supporting tools (client libraries, APIs, etc.) make it easy for developers at any level to quickly build applications and services with time series data. Optimized for developer efficiency and productivity, the InfluxDB platform gives builders time to focus on the features and functionalities that give their internal projects value and their applications a competitive edge.
    Starting Price: $0
  • 2
    Telegraf

    Telegraf

    InfluxData

    Telegraf is the open source server agent to help you collect metrics from your stacks, sensors and systems. Telegraf is a plugin-driven server agent for collecting and sending metrics and events from databases, systems, and IoT sensors. Telegraf is written in Go and compiles into a single binary with no external dependencies, and requires a very minimal memory footprint. Telegraf can collect metrics from a wide array of inputs and write them into a wide array of outputs. It is plugin-driven for both collection and output of data so it is easily extendable. It is written in Go, which means that it is a compiled and standalone binary that can be executed on any system with no need for external dependencies, no npm, pip, gem, or other package management tools required. With 300+ plugins already written by subject matter experts on the data in the community, it is easy to start collecting metrics from your end-points.
    Starting Price: $0
  • 3
    Instaclustr

    Instaclustr

    Instaclustr

    Instaclustr is the Open Source-as-a-Service company, delivering reliability at scale. We operate an automated, proven, and trusted managed environment, providing database, analytics, search, and messaging. We enable companies to focus internal development and operational resources on building cutting edge customer-facing applications. Instaclustr works with cloud providers including AWS, Heroku, Azure, IBM Cloud, and Google Cloud Platform. The company has SOC 2 certification and provides 24/7 customer support.
    Starting Price: $20 per node per month
  • 4
    Prometheus

    Prometheus

    Prometheus

    Power your metrics and alerting with a leading open-source monitoring solution. Prometheus fundamentally stores all data as time series: streams of timestamped values belonging to the same metric and the same set of labeled dimensions. Besides stored time series, Prometheus may generate temporary derived time series as the result of queries. Prometheus provides a functional query language called PromQL (Prometheus Query Language) that lets the user select and aggregate time series data in real time. The result of an expression can either be shown as a graph, viewed as tabular data in Prometheus's expression browser, or consumed by external systems via the HTTP API. Prometheus is configured via command-line flags and a configuration file. While the command-line flags configure immutable system parameters (such as storage locations, amount of data to keep on disk and in memory, etc.). Download: https://sourceforge.net/projects/prometheus.mirror/
    Starting Price: Free
  • 5
    ArcadeDB

    ArcadeDB

    ArcadeDB

    Manage complex models using ArcadeDB without any compromise. Forget about Polyglot Persistence. no need for multiple databases. You can store graphs, documents, key values and time series all in one ArcadeDB Multi-Model database. Since each model is native to the database engine, you don't have to worry about translations slowing you down. ArcadeDB's engine was built with Alien Technology. It's able to crunch millions of records per second. With ArcadeDB, the traversing speed is not affected by the database size. It is always constant, whether your database has a few records or billions. ArcadeDB can work as an embedded database, on a single server and can scale up using multiple servers with Kubernetes. Flexible enough to run on any platform with a small footprint. Your data is secure. Our unbreakable fully transactional engine assures durability for mission-critical production databases. ArcadeDB uses a Raft Consensus Algorithm to maintain consistency across multiple servers.
    Starting Price: Free
  • 6
    CrateDB

    CrateDB

    CrateDB

    The enterprise database for time series, documents, and vectors. Store any type of data and combine the simplicity of SQL with the scalability of NoSQL. CrateDB is an open source distributed database running queries in milliseconds, whatever the complexity, volume and velocity of data.
  • 7
    Circonus IRONdb
    Circonus IRONdb makes it easy to handle and store unlimited volumes of telemetry data, easily handling billions of metric streams. Circonus IRONdb enables users to identify areas of opportunity and challenge in real time, providing forensic, predictive, and automated analytics capabilities that no other product can match. Rely on machine learning to automatically set a “new normal” as your data and operations dynamically change. Circonus IRONdb integrates with Grafana, which has native support for our analytics query language. We are also compatible with other visualization apps, such as Graphite-web. Circonus IRONdb keeps your data safe by storing multiple copies of your data in a cluster of IRONdb nodes. System administrators typically manage clustering, often spending significant time maintaining it and keeping it working. Circonus IRONdb allows operators to set and forget their cluster, and stop wasting resources manually managing their time series data store.
  • 8
    QuestDB

    QuestDB

    QuestDB

    QuestDB is a relational column-oriented database designed for time series and event data. It uses SQL with extensions for time series to assist with real-time analytics. These pages cover core concepts of QuestDB, including setup steps, usage guides, and reference documentation for syntax, APIs and configuration. This section describes the architecture of QuestDB, how it stores and queries data, and introduces features and capabilities unique to the system. Designated timestamp is a core feature that enables time-oriented language capabilities and partitioning. Symbol type makes storing and retrieving repetitive strings efficient. Storage model describes how QuestDB stores records and partitions within tables. Indexes can be used for faster read access on specific columns. Partitions can be used for significant performance benefits on calculations and queries. SQL extensions allow performant time series analysis with a concise syntax.
  • Previous
  • You're on page 1
  • Next