Compare the Top Time Series Databases that integrate with MongoDB as of June 2025

This a list of Time Series Databases that integrate with MongoDB. Use the filters on the left to add additional filters for products that have integrations with MongoDB. View the products that work with MongoDB in the table below.

What are Time Series Databases for MongoDB?

Time series databases (TSDB) are databases designed to store time series and time-stamped data as pairs of times and values. Time series databases are useful for easily managing and analyzing time series. Compare and read user reviews of the best Time Series Databases for MongoDB currently available using the table below. This list is updated regularly.

  • 1
    Telegraf

    Telegraf

    InfluxData

    Telegraf is the open source server agent to help you collect metrics from your stacks, sensors and systems. Telegraf is a plugin-driven server agent for collecting and sending metrics and events from databases, systems, and IoT sensors. Telegraf is written in Go and compiles into a single binary with no external dependencies, and requires a very minimal memory footprint. Telegraf can collect metrics from a wide array of inputs and write them into a wide array of outputs. It is plugin-driven for both collection and output of data so it is easily extendable. It is written in Go, which means that it is a compiled and standalone binary that can be executed on any system with no need for external dependencies, no npm, pip, gem, or other package management tools required. With 300+ plugins already written by subject matter experts on the data in the community, it is easy to start collecting metrics from your end-points.
    Starting Price: $0
  • 2
    Prometheus

    Prometheus

    Prometheus

    Power your metrics and alerting with a leading open-source monitoring solution. Prometheus fundamentally stores all data as time series: streams of timestamped values belonging to the same metric and the same set of labeled dimensions. Besides stored time series, Prometheus may generate temporary derived time series as the result of queries. Prometheus provides a functional query language called PromQL (Prometheus Query Language) that lets the user select and aggregate time series data in real time. The result of an expression can either be shown as a graph, viewed as tabular data in Prometheus's expression browser, or consumed by external systems via the HTTP API. Prometheus is configured via command-line flags and a configuration file. While the command-line flags configure immutable system parameters (such as storage locations, amount of data to keep on disk and in memory, etc.). Download: https://sourceforge.net/projects/prometheus.mirror/
    Starting Price: Free
  • 3
    ArcadeDB

    ArcadeDB

    ArcadeDB

    Manage complex models using ArcadeDB without any compromise. Forget about Polyglot Persistence. no need for multiple databases. You can store graphs, documents, key values and time series all in one ArcadeDB Multi-Model database. Since each model is native to the database engine, you don't have to worry about translations slowing you down. ArcadeDB's engine was built with Alien Technology. It's able to crunch millions of records per second. With ArcadeDB, the traversing speed is not affected by the database size. It is always constant, whether your database has a few records or billions. ArcadeDB can work as an embedded database, on a single server and can scale up using multiple servers with Kubernetes. Flexible enough to run on any platform with a small footprint. Your data is secure. Our unbreakable fully transactional engine assures durability for mission-critical production databases. ArcadeDB uses a Raft Consensus Algorithm to maintain consistency across multiple servers.
    Starting Price: Free
  • 4
    Circonus IRONdb
    Circonus IRONdb makes it easy to handle and store unlimited volumes of telemetry data, easily handling billions of metric streams. Circonus IRONdb enables users to identify areas of opportunity and challenge in real time, providing forensic, predictive, and automated analytics capabilities that no other product can match. Rely on machine learning to automatically set a “new normal” as your data and operations dynamically change. Circonus IRONdb integrates with Grafana, which has native support for our analytics query language. We are also compatible with other visualization apps, such as Graphite-web. Circonus IRONdb keeps your data safe by storing multiple copies of your data in a cluster of IRONdb nodes. System administrators typically manage clustering, often spending significant time maintaining it and keeping it working. Circonus IRONdb allows operators to set and forget their cluster, and stop wasting resources manually managing their time series data store.
  • Previous
  • You're on page 1
  • Next