Compare the Top Time Series Databases that integrate with Hadoop as of December 2025

This a list of Time Series Databases that integrate with Hadoop. Use the filters on the left to add additional filters for products that have integrations with Hadoop. View the products that work with Hadoop in the table below.

What are Time Series Databases for Hadoop?

Time series databases (TSDB) are databases designed to store time series and time-stamped data as pairs of times and values. Time series databases are useful for easily managing and analyzing time series. Compare and read user reviews of the best Time Series Databases for Hadoop currently available using the table below. This list is updated regularly.

  • 1
    Prometheus

    Prometheus

    Prometheus

    Power your metrics and alerting with a leading open-source monitoring solution. Prometheus fundamentally stores all data as time series: streams of timestamped values belonging to the same metric and the same set of labeled dimensions. Besides stored time series, Prometheus may generate temporary derived time series as the result of queries. Prometheus provides a functional query language called PromQL (Prometheus Query Language) that lets the user select and aggregate time series data in real time. The result of an expression can either be shown as a graph, viewed as tabular data in Prometheus's expression browser, or consumed by external systems via the HTTP API. Prometheus is configured via command-line flags and a configuration file. While the command-line flags configure immutable system parameters (such as storage locations, amount of data to keep on disk and in memory, etc.). Download: https://sourceforge.net/projects/prometheus.mirror/
    Starting Price: Free
  • 2
    Warp 10
    Warp 10 is a modular open source platform that collects, stores, and analyzes data from sensors. Shaped for the IoT with a flexible data model, Warp 10 provides a unique and powerful framework to simplify your processes from data collection to analysis and visualization, with the support of geolocated data in its core model (called Geo Time Series). Warp 10 is both a time series database and a powerful analytics environment, allowing you to make: statistics, extraction of characteristics for training models, filtering and cleaning of data, detection of patterns and anomalies, synchronization or even forecasts. The analysis environment can be implemented within a large ecosystem of software components such as Spark, Kafka Streams, Hadoop, Jupyter, Zeppelin and many more. It can also access data stored in many existing solutions, relational or NoSQL databases, search engines and S3 type object storage system.
  • 3
    Google Cloud Bigtable
    Google Cloud Bigtable is a fully managed, scalable NoSQL database service for large analytical and operational workloads. Fast and performant: Use Cloud Bigtable as the storage engine that grows with you from your first gigabyte to petabyte-scale for low-latency applications as well as high-throughput data processing and analytics. Seamless scaling and replication: Start with a single node per cluster, and seamlessly scale to hundreds of nodes dynamically supporting peak demand. Replication also adds high availability and workload isolation for live serving apps. Simple and integrated: Fully managed service that integrates easily with big data tools like Hadoop, Dataflow, and Dataproc. Plus, support for the open source HBase API standard makes it easy for development teams to get started.
  • Previous
  • You're on page 1
  • Next