Compare the Top Time Series Databases that integrate with DataHub as of July 2025

This a list of Time Series Databases that integrate with DataHub. Use the filters on the left to add additional filters for products that have integrations with DataHub. View the products that work with DataHub in the table below.

What are Time Series Databases for DataHub?

Time series databases (TSDB) are databases designed to store time series and time-stamped data as pairs of times and values. Time series databases are useful for easily managing and analyzing time series. Compare and read user reviews of the best Time Series Databases for DataHub currently available using the table below. This list is updated regularly.

  • 1
    Apache Druid
    Apache Druid is an open source distributed data store. Druid’s core design combines ideas from data warehouses, timeseries databases, and search systems to create a high performance real-time analytics database for a broad range of use cases. Druid merges key characteristics of each of the 3 systems into its ingestion layer, storage format, querying layer, and core architecture. Druid stores and compresses each column individually, and only needs to read the ones needed for a particular query, which supports fast scans, rankings, and groupBys. Druid creates inverted indexes for string values for fast search and filter. Out-of-the-box connectors for Apache Kafka, HDFS, AWS S3, stream processors, and more. Druid intelligently partitions data based on time and time-based queries are significantly faster than traditional databases. Scale up or down by just adding or removing servers, and Druid automatically rebalances. Fault-tolerant architecture routes around server failures.
  • Previous
  • You're on page 1
  • Next