Compare the Top Synthetic Data Generation Tools that integrate with Jenkins as of November 2025

This a list of Synthetic Data Generation tools that integrate with Jenkins. Use the filters on the left to add additional filters for products that have integrations with Jenkins. View the products that work with Jenkins in the table below.

What are Synthetic Data Generation Tools for Jenkins?

Synthetic data generation tools are software programs used to produce artificial datasets for a variety of purposes. They use a range of algorithms and techniques to create data that is statistically similar to existing real-world data but does not contain any personal identifiable information. These tools can help organizations test their products and systems in various scenarios without compromising user privacy. The generated synthetic data can also be used for training machine learning models as an alternative to using real-life datasets. Compare and read user reviews of the best Synthetic Data Generation tools for Jenkins currently available using the table below. This list is updated regularly.

  • 1
    DATPROF

    DATPROF

    DATPROF

    Test Data Management solutions like data masking, synthetic data generation, data subsetting, data discovery, database virtualization, data automation are our core business. We see and understand the struggles of software development teams with test data. Personally Identifiable Information? Too large environments? Long waiting times for a test data refresh? We envision to solve these issues: - Obfuscating, generating or masking databases and flat files; - Extracting or filtering specific data content with data subsetting; - Discovering, profiling and analysing solutions for understanding your test data, - Automating, integrating and orchestrating test data provisioning into your CI/CD pipelines and - Cloning, snapshotting and timetraveling throug your test data with database virtualization. We improve and innovate our test data software with the latest technologies every single day to support medium to large size organizations in their Test Data Management.
  • 2
    AutonomIQ

    AutonomIQ

    AutonomIQ

    Our AI-driven, autonomous low-code automation platform is designed to help you achieve the highest quality outcome in the shortest amount of time possible. Generate automation scripts automatically in plain English with our Natural Language Processing (NLP) powered solution, and allow your coders to focus on innovation. Maintain quality throughout your application lifecycle with our autonomous discovery and up-to-date tracking of changes. Reduce risk in your dynamic development environment with our autonomous healing capability and deliver flawless updates by keeping automation current. Ensure compliance with all regulatory requirements and eliminate security risk using AI-generated synthetic data for all your automation needs. Run multiple tests in parallel, determine test frequency, keep pace with browser updates and executions across operating systems and platforms.
  • 3
    Benerator

    Benerator

    Benerator

    Describe your data model on an abstract level in XML. Involve your business people as no developer skills are necessary. Use a wide range of function libraries to fake realistic data. Write your own extensions in Javascript or Java. Integrate your data processes into Gitlab CI or Jenkins. Generate, anonymize, and migrate with Benerator’s model-driven data toolkit. Define processes to anonymize or pseudonymize data in plain XML on an abstract level without the need for developer skills. Stay GDPR compliant with your data and protect the privacy of your customers. Mask and obfuscate sensitive data for BI, test, development, or training purposes. Combine data from various sources (subsetting) and keep the data integrity. Migrate and transform your data in multisystem landscapes. Reuse your testing data models to migrate production environments. Keep your data consistent and reliable in a microsystem architecture.
  • 4
    GenRocket

    GenRocket

    GenRocket

    Enterprise synthetic test data solutions. In order to generate test data that accurately reflects the structure of your application or database, it must be easy to model and maintain each test data project as changes to the data model occur throughout the lifecycle of the application. Maintain referential integrity of parent/child/sibling relationships across the data domains within an application database or across multiple databases used by multiple applications. Ensure the consistency and integrity of synthetic data attributes across applications, data sources and targets. For example, a customer name must always match the same customer ID across multiple transactions simulated by real-time synthetic data generation. Customers want to quickly and accurately create their data model as a test data project. GenRocket offers 10 methods for data model setup. XTS, DDL, Scratchpad, Presets, XSD, CSV, YAML, JSON, Spark Schema, Salesforce.
  • Previous
  • You're on page 1
  • Next