Compare the Top Streaming Analytics Platforms that integrate with witboost as of January 2026

This a list of Streaming Analytics platforms that integrate with witboost. Use the filters on the left to add additional filters for products that have integrations with witboost. View the products that work with witboost in the table below.

What are Streaming Analytics Platforms for witboost?

Streaming analytics platforms are software solutions that enable real-time processing and analysis of data as it is generated or streamed from various sources such as IoT devices, sensors, social media, and transactional systems. These platforms allow businesses to gain immediate insights from continuous data streams, enabling them to make faster decisions, detect anomalies, and optimize operations in real-time. Key features of streaming analytics platforms include data ingestion, real-time event processing, pattern recognition, and advanced analytics like predictive modeling and machine learning integration. They are commonly used in applications such as fraud detection, customer behavior analysis, network monitoring, and supply chain optimization. Compare and read user reviews of the best Streaming Analytics platforms for witboost currently available using the table below. This list is updated regularly.

  • 1
    Confluent

    Confluent

    Confluent

    Infinite retention for Apache Kafka® with Confluent. Be infrastructure-enabled, not infrastructure-restricted Legacy technologies require you to choose between being real-time or highly-scalable. Event streaming enables you to innovate and win - by being both real-time and highly-scalable. Ever wonder how your rideshare app analyzes massive amounts of data from multiple sources to calculate real-time ETA? Ever wonder how your credit card company analyzes millions of credit card transactions across the globe and sends fraud notifications in real-time? The answer is event streaming. Move to microservices. Enable your hybrid strategy through a persistent bridge to cloud. Break down silos to demonstrate compliance. Gain real-time, persistent event transport. The list is endless.
  • 2
    Apache Spark

    Apache Spark

    Apache Software Foundation

    Apache Spark™ is a unified analytics engine for large-scale data processing. Apache Spark achieves high performance for both batch and streaming data, using a state-of-the-art DAG scheduler, a query optimizer, and a physical execution engine. Spark offers over 80 high-level operators that make it easy to build parallel apps. And you can use it interactively from the Scala, Python, R, and SQL shells. Spark powers a stack of libraries including SQL and DataFrames, MLlib for machine learning, GraphX, and Spark Streaming. You can combine these libraries seamlessly in the same application. Spark runs on Hadoop, Apache Mesos, Kubernetes, standalone, or in the cloud. It can access diverse data sources. You can run Spark using its standalone cluster mode, on EC2, on Hadoop YARN, on Mesos, or on Kubernetes. Access data in HDFS, Alluxio, Apache Cassandra, Apache HBase, Apache Hive, and hundreds of other data sources.
  • Previous
  • You're on page 1
  • Next