Compare the Top Streaming Analytics Platforms that integrate with Kubernetes as of September 2025

This a list of Streaming Analytics platforms that integrate with Kubernetes. Use the filters on the left to add additional filters for products that have integrations with Kubernetes. View the products that work with Kubernetes in the table below.

What are Streaming Analytics Platforms for Kubernetes?

Streaming analytics platforms are software solutions that enable real-time processing and analysis of data as it is generated or streamed from various sources such as IoT devices, sensors, social media, and transactional systems. These platforms allow businesses to gain immediate insights from continuous data streams, enabling them to make faster decisions, detect anomalies, and optimize operations in real-time. Key features of streaming analytics platforms include data ingestion, real-time event processing, pattern recognition, and advanced analytics like predictive modeling and machine learning integration. They are commonly used in applications such as fraud detection, customer behavior analysis, network monitoring, and supply chain optimization. Compare and read user reviews of the best Streaming Analytics platforms for Kubernetes currently available using the table below. This list is updated regularly.

  • 1
    Kapacitor

    Kapacitor

    InfluxData

    Kapacitor is a native data processing engine for InfluxDB 1.x and is an integrated component in the InfluxDB 2.0 platform. Kapacitor can process both stream and batch data from InfluxDB, acting on this data in real-time via its programming language TICKscript. Today’s modern applications require more than just dashboarding and operator alerts—they need the ability to trigger actions. Kapacitor’s alerting system follows a publish-subscribe design pattern. Alerts are published to topics and handlers subscribe to a topic. This pub/sub model and the ability for these to call User Defined Functions make Kapacitor very flexible to act as the control plane in your environment, performing tasks like auto-scaling, stock reordering, and IoT device control. Kapacitor provides a simple plugin architecture, or interface, that allows it to integrate with any anomaly detection engine.
    Starting Price: $0.002 per GB per hour
  • 2
    Lenses

    Lenses

    Lenses.io

    Enable everyone to discover and observe streaming data. Sharing, documenting and cataloging your data can increase productivity by up to 95%. Then from data, build apps for production use cases. Apply a data-centric security model to cover all the gaps of open source technology, and address data privacy. Provide secure and low-code data pipeline capabilities. Eliminate all darkness and offer unparalleled observability in data and apps. Unify your data mesh and data technologies and be confident with open source in production. Lenses is the highest rated product for real-time stream analytics according to independent third party reviews. With feedback from our community and thousands of engineering hours invested, we've built features that ensure you can focus on what drives value from your real time data. Deploy and run SQL-based real time applications over any Kafka Connect or Kubernetes infrastructure including AWS EKS.
    Starting Price: $49 per month
  • 3
    Apache Spark

    Apache Spark

    Apache Software Foundation

    Apache Spark™ is a unified analytics engine for large-scale data processing. Apache Spark achieves high performance for both batch and streaming data, using a state-of-the-art DAG scheduler, a query optimizer, and a physical execution engine. Spark offers over 80 high-level operators that make it easy to build parallel apps. And you can use it interactively from the Scala, Python, R, and SQL shells. Spark powers a stack of libraries including SQL and DataFrames, MLlib for machine learning, GraphX, and Spark Streaming. You can combine these libraries seamlessly in the same application. Spark runs on Hadoop, Apache Mesos, Kubernetes, standalone, or in the cloud. It can access diverse data sources. You can run Spark using its standalone cluster mode, on EC2, on Hadoop YARN, on Mesos, or on Kubernetes. Access data in HDFS, Alluxio, Apache Cassandra, Apache HBase, Apache Hive, and hundreds of other data sources.
  • 4
    Redpanda

    Redpanda

    Redpanda Data

    Breakthrough data streaming capabilities that let you deliver customer experiences never before possible. Kafka API and ecosystem are compatible. Redpanda BulletPredictable low latencies with zero data loss. Redpanda BulletUpto 10x faster than Kafka. Redpanda BulletEnterprise-grade support and hotfixes. Redpanda BulletAutomated backups to S3/GCS. Redpanda Bullet100% freedom from routine Kafka operations. Redpanda BulletSupport for AWS and GCP. Redpanda was designed from the ground up to be easily installed to get streaming up and running quickly. After you see its power, put Redpanda to the test in production. Use the more advanced Redpanda features. We manage provisioning, monitoring, and upgrades. Without any access to your cloud credentials. Sensitive data never leaves your environment. Provisioned, operated, and maintained for you. Configurable instance types. Expand cluster as your needs grow.
  • 5
    TIBCO Streaming
    TIBCO Streaming is a real-time analytics platform designed to process and analyze high-velocity data streams, enabling organizations to make immediate, data-driven decisions. It offers a low-code development environment through StreamBase Studio, allowing users to build complex event processing applications with minimal coding. It supports over 150 connectors, including APIs, Apache Kafka, MQTT, RabbitMQ, and databases like MySQL and JDBC, facilitating seamless integration with various data sources. TIBCO Streaming incorporates dynamic learning operators, enabling adaptive machine learning models that provide contextual insights and automate decision-making processes. It also features real-time business intelligence capabilities, allowing users to visualize live data alongside historical information for comprehensive analysis. It is cloud-ready, supporting deployments on AWS, Azure, GCP, and on-premises environments.
  • 6
    Apache Flink

    Apache Flink

    Apache Software Foundation

    Apache Flink is a framework and distributed processing engine for stateful computations over unbounded and bounded data streams. Flink has been designed to run in all common cluster environments, perform computations at in-memory speed and at any scale. Any kind of data is produced as a stream of events. Credit card transactions, sensor measurements, machine logs, or user interactions on a website or mobile application, all of these data are generated as a stream. Apache Flink excels at processing unbounded and bounded data sets. Precise control of time and state enable Flink’s runtime to run any kind of application on unbounded streams. Bounded streams are internally processed by algorithms and data structures that are specifically designed for fixed sized data sets, yielding excellent performance. Flink is designed to work well each of the previously listed resource managers.
  • Previous
  • You're on page 1
  • Next