Compare the Top SQL Databases that integrate with Apache Spark as of December 2025

This a list of SQL Databases that integrate with Apache Spark. Use the filters on the left to add additional filters for products that have integrations with Apache Spark. View the products that work with Apache Spark in the table below.

What are SQL Databases for Apache Spark?

SQL databases are structured systems that use the Structured Query Language (SQL) to store, retrieve, and manage data. They organize data into tables with rows and columns, ensuring that information is easily accessible, consistent, and scalable. SQL databases are widely used in applications that require complex queries, transactions, and data integrity, making them essential for web applications, financial systems, and enterprise environments. These databases offer robust features for security, data normalization, and maintaining relationships between different datasets. Overall, SQL databases are fundamental to managing relational data efficiently and reliably across various industries. Compare and read user reviews of the best SQL Databases for Apache Spark currently available using the table below. This list is updated regularly.

  • 1
    SingleStore

    SingleStore

    SingleStore

    SingleStore (formerly MemSQL) is a distributed, highly-scalable SQL database that can run anywhere. We deliver maximum performance for transactional and analytical workloads with familiar relational models. SingleStore is a scalable SQL database that ingests data continuously to perform operational analytics for the front lines of your business. Ingest millions of events per second with ACID transactions while simultaneously analyzing billions of rows of data in relational SQL, JSON, geospatial, and full-text search formats. SingleStore delivers ultimate data ingestion performance at scale and supports built in batch loading and real time data pipelines. SingleStore lets you achieve ultra fast query response across both live and historical data using familiar ANSI SQL. Perform ad hoc analysis with business intelligence tools, run machine learning algorithms for real-time scoring, perform geoanalytic queries in real time.
    Starting Price: $0.69 per hour
  • 2
    Apache Phoenix

    Apache Phoenix

    Apache Software Foundation

    Apache Phoenix enables OLTP and operational analytics in Hadoop for low-latency applications by combining the best of both worlds. The power of standard SQL and JDBC APIs with full ACID transaction capabilities and the flexibility of late-bound, schema-on-read capabilities from the NoSQL world by leveraging HBase as its backing store. Apache Phoenix is fully integrated with other Hadoop products such as Spark, Hive, Pig, Flume, and Map Reduce. Become the trusted data platform for OLTP and operational analytics for Hadoop through well-defined, industry-standard APIs. Apache Phoenix takes your SQL query, compiles it into a series of HBase scans, and orchestrates the running of those scans to produce regular JDBC result sets. Direct use of the HBase API, along with coprocessors and custom filters, results in performance on the order of milliseconds for small queries, or seconds for tens of millions of rows.
    Starting Price: Free
  • Previous
  • You're on page 1
  • Next