Compare the Top Reranking Models that integrate with LangChain as of September 2025

This a list of Reranking Models that integrate with LangChain. Use the filters on the left to add additional filters for products that have integrations with LangChain. View the products that work with LangChain in the table below.

What are Reranking Models for LangChain?

Reranking models are AI models in information retrieval systems that refine the order of retrieved documents to better match user queries. Typically employed in two-stage retrieval pipelines, these models first generate a broad set of candidate documents and then reorder them based on relevance. They utilize sophisticated techniques, such as deep learning models like BERT, T5, and their multilingual variants, to capture complex semantic relationships between queries and documents. The primary advantage of reranking models lies in their ability to improve the precision of search results, ensuring that the most pertinent documents are presented to the user. However, this enhanced accuracy often comes at the cost of increased computational resources and potential latency. Despite these challenges, rerankers are integral to applications requiring high-quality information retrieval, such as question answering, semantic search, and recommendation systems. Compare and read user reviews of the best Reranking Models for LangChain currently available using the table below. This list is updated regularly.

  • 1
    Pinecone Rerank v0
    Pinecone Rerank V0 is a cross-encoder model optimized for precision in reranking tasks, enhancing enterprise search and retrieval-augmented generation (RAG) systems. It processes queries and documents together to capture fine-grained relevance, assigning a relevance score from 0 to 1 for each query-document pair. The model's maximum context length is set to 512 tokens to preserve ranking quality. Evaluations on the BEIR benchmark demonstrated that Pinecone Rerank V0 achieved the highest average NDCG@10, outperforming other models on 6 out of 12 datasets. For instance, it showed up to a 60% boost on the Fever dataset compared to Google Semantic Ranker and over 40% on the Climate-Fever dataset relative to cohere-v3-multilingual or voyageai-rerank-2. The model is accessible through Pinecone Inference and is available to all users in public preview.
    Starting Price: $25 per month
  • 2
    AI-Q NVIDIA Blueprint
    Create AI agents that reason, plan, reflect, and refine to produce high-quality reports based on source materials of your choice. An AI research agent, informed by many data sources, can synthesize hours of research in minutes. The AI-Q NVIDIA Blueprint enables developers to build AI agents that use reasoning and connect to many data sources and tools to distill in-depth source materials with efficiency and precision. Using AI-Q, agents summarize large data sets, generating tokens 5x faster and ingesting petabyte-scale data 15x faster with better semantic accuracy. Multimodal PDF data extraction and retrieval with NVIDIA NeMo Retriever, 15x faster ingestion of enterprise data, 3x lower retrieval latency, multilingual and cross-lingual, reranking to further improve accuracy, and GPU-accelerated index creation and search.
  • 3
    Jina Reranker
    Jina Reranker v2 is a state-of-the-art reranker designed for Agentic Retrieval-Augmented Generation (RAG) systems. It enhances search relevance and RAG accuracy by reordering search results based on deeper semantic understanding. It supports over 100 languages, enabling multilingual retrieval regardless of the query language. It is optimized for function-calling and code search, making it ideal for applications requiring precise function signatures and code snippet retrieval. Jina Reranker v2 also excels in ranking structured data, such as tables, by understanding the downstream intent to query structured databases like MySQL or MongoDB. With a 6x speedup over its predecessor, it offers ultra-fast inference, processing documents in milliseconds. The model is available via Jina's Reranker API and can be integrated into existing applications using platforms like Langchain and LlamaIndex.
  • Previous
  • You're on page 1
  • Next