Compare the Top Reranking Models that integrate with Hugging Face as of December 2025

This a list of Reranking Models that integrate with Hugging Face. Use the filters on the left to add additional filters for products that have integrations with Hugging Face. View the products that work with Hugging Face in the table below.

What are Reranking Models for Hugging Face?

Reranking models are AI models in information retrieval systems that refine the order of retrieved documents to better match user queries. Typically employed in two-stage retrieval pipelines, these models first generate a broad set of candidate documents and then reorder them based on relevance. They utilize sophisticated techniques, such as deep learning models like BERT, T5, and their multilingual variants, to capture complex semantic relationships between queries and documents. The primary advantage of reranking models lies in their ability to improve the precision of search results, ensuring that the most pertinent documents are presented to the user. However, this enhanced accuracy often comes at the cost of increased computational resources and potential latency. Despite these challenges, rerankers are integral to applications requiring high-quality information retrieval, such as question answering, semantic search, and recommendation systems. Compare and read user reviews of the best Reranking Models for Hugging Face currently available using the table below. This list is updated regularly.

  • 1
    BGE

    BGE

    BGE

    BGE (BAAI General Embedding) is a comprehensive retrieval toolkit designed for search and Retrieval-Augmented Generation (RAG) applications. It offers inference, evaluation, and fine-tuning capabilities for embedding models and rerankers, facilitating the development of advanced information retrieval systems. The toolkit includes components such as embedders and rerankers, which can be integrated into RAG pipelines to enhance search relevance and accuracy. BGE supports various retrieval methods, including dense retrieval, multi-vector retrieval, and sparse retrieval, providing flexibility to handle different data types and retrieval scenarios. The models are available through platforms like Hugging Face, and the toolkit provides tutorials and APIs to assist users in implementing and customizing their retrieval systems. By leveraging BGE, developers can build robust and efficient search solutions tailored to their specific needs.
    Starting Price: Free
  • 2
    Pinecone Rerank v0
    Pinecone Rerank V0 is a cross-encoder model optimized for precision in reranking tasks, enhancing enterprise search and retrieval-augmented generation (RAG) systems. It processes queries and documents together to capture fine-grained relevance, assigning a relevance score from 0 to 1 for each query-document pair. The model's maximum context length is set to 512 tokens to preserve ranking quality. Evaluations on the BEIR benchmark demonstrated that Pinecone Rerank V0 achieved the highest average NDCG@10, outperforming other models on 6 out of 12 datasets. For instance, it showed up to a 60% boost on the Fever dataset compared to Google Semantic Ranker and over 40% on the Climate-Fever dataset relative to cohere-v3-multilingual or voyageai-rerank-2. The model is accessible through Pinecone Inference and is available to all users in public preview.
    Starting Price: $25 per month
  • 3
    RankGPT

    RankGPT

    Weiwei Sun

    RankGPT is a Python toolkit designed to explore the use of generative Large Language Models (LLMs) like ChatGPT and GPT-4 for relevance ranking in Information Retrieval (IR). It introduces methods such as instructional permutation generation and a sliding window strategy to enable LLMs to effectively rerank documents. It supports various LLMs, including GPT-3.5, GPT-4, Claude, Cohere, and Llama2 via LiteLLM. RankGPT provides modules for retrieval, reranking, evaluation, and response analysis, facilitating end-to-end workflows. It includes a module for detailed analysis of input prompts and LLM responses, addressing reliability concerns with LLM APIs and non-deterministic behavior in Mixture-of-Experts (MoE) models. The toolkit supports various backends, including SGLang and TensorRT-LLM, and is compatible with a wide range of LLMs. RankGPT's Model Zoo includes models like LiT5 and MonoT5, hosted on Hugging Face.
    Starting Price: Free
  • 4
    TILDE

    TILDE

    ielab

    TILDE (Term Independent Likelihood moDEl) is a passage re-ranking and expansion framework built on BERT, designed to enhance retrieval performance by combining sparse term matching with deep contextual representations. The original TILDE model pre-computes term weights across the entire BERT vocabulary, which can lead to large index sizes. To address this, TILDEv2 introduces a more efficient approach by computing term weights only for terms present in expanded passages, resulting in indexes that are 99% smaller than those of the original TILDE. This efficiency is achieved by leveraging TILDE as a passage expansion model, where passages are expanded using top-k terms (e.g., top 200) to enrich their content. It provides scripts for indexing collections, re-ranking BM25 results, and training models using datasets like MS MARCO.
  • Previous
  • You're on page 1
  • Next