Best Reranking Models for Amazon SageMaker

Compare the Top Reranking Models that integrate with Amazon SageMaker as of October 2025

This a list of Reranking Models that integrate with Amazon SageMaker. Use the filters on the left to add additional filters for products that have integrations with Amazon SageMaker. View the products that work with Amazon SageMaker in the table below.

What are Reranking Models for Amazon SageMaker?

Reranking models are AI models in information retrieval systems that refine the order of retrieved documents to better match user queries. Typically employed in two-stage retrieval pipelines, these models first generate a broad set of candidate documents and then reorder them based on relevance. They utilize sophisticated techniques, such as deep learning models like BERT, T5, and their multilingual variants, to capture complex semantic relationships between queries and documents. The primary advantage of reranking models lies in their ability to improve the precision of search results, ensuring that the most pertinent documents are presented to the user. However, this enhanced accuracy often comes at the cost of increased computational resources and potential latency. Despite these challenges, rerankers are integral to applications requiring high-quality information retrieval, such as question answering, semantic search, and recommendation systems. Compare and read user reviews of the best Reranking Models for Amazon SageMaker currently available using the table below. This list is updated regularly.

  • 1
    Pinecone Rerank v0
    Pinecone Rerank V0 is a cross-encoder model optimized for precision in reranking tasks, enhancing enterprise search and retrieval-augmented generation (RAG) systems. It processes queries and documents together to capture fine-grained relevance, assigning a relevance score from 0 to 1 for each query-document pair. The model's maximum context length is set to 512 tokens to preserve ranking quality. Evaluations on the BEIR benchmark demonstrated that Pinecone Rerank V0 achieved the highest average NDCG@10, outperforming other models on 6 out of 12 datasets. For instance, it showed up to a 60% boost on the Fever dataset compared to Google Semantic Ranker and over 40% on the Climate-Fever dataset relative to cohere-v3-multilingual or voyageai-rerank-2. The model is accessible through Pinecone Inference and is available to all users in public preview.
    Starting Price: $25 per month
  • 2
    Cohere Rerank
    Cohere Rerank is a powerful semantic search tool that refines enterprise search and retrieval by precisely ranking results. It processes a query and a list of documents, ordering them from most to least semantically relevant, and assigns a relevance score between 0 and 1 to each document. This ensures that only the most pertinent documents are passed into your RAG pipeline and agentic workflows, reducing token use, minimizing latency, and boosting accuracy. The latest model, Rerank v3.5, supports English and multilingual documents, as well as semi-structured data like JSON, with a context length of 4096 tokens. Long documents are automatically chunked, and the highest relevance score among chunks is used for ranking. Rerank can be integrated into existing keyword or semantic search systems with minimal code changes, enhancing the relevance of search results. It is accessible via Cohere's API and is compatible with various platforms, including Amazon Bedrock and SageMaker.
  • Previous
  • You're on page 1
  • Next