Compare the Top Real-Time Operating Systems (RTOS) for Mac as of August 2025

What are Real-Time Operating Systems (RTOS) for Mac?

Real-time operating systems (RTOS) are operating systems that are specifically designed for serving real-time applications that require real-time processing of data. Compare and read user reviews of the best Real-Time Operating Systems (RTOS) for Mac currently available using the table below. This list is updated regularly.

  • 1
    Mbed OS
    Arm Mbed OS is a free, open-source IoT operating system that includes all the necessary features to develop IoT products. The OS includes everything you need to develop smart, connected products on Arm Cortex-M based hardware, including machine learning capabilities, security, connectivity stacks, an RTOS kernel and drivers for sensors and I/O devices. Arm Mbed OS is designed for the Internet of Things. It is integrated with connectivity, machine learning, networking, and security stacks and is supported with software libraries, development hardware, tutorials and examples. From hardware to the cloud, Mbed OS supports more than 70 silicon, module, cloud, and OEM partners, optimizing your developer choice. By using the Mbed OS API, your application code can remain clean, portable, and simple, while taking advantage of security, communications and machine learning. The integrated solution reduces development cost, time, and risk.
  • 2
    Zephyr

    Zephyr

    Zephyr

    From simple embedded environmental sensors and LED wearables to sophisticated embedded controllers, smart watches, and IoT wireless applications. Implements configurable architecture-specific stack-overflow protection, kernel object and device driver permission tracking, and thread isolation with thread-level memory protection on x86, ARC, and ARM architectures, userspace, and memory domains. For platforms without MMU/MPU and memory constrained devices, supports combining application-specific code with a custom kernel to create a monolithic image that gets loaded and executed on a system’s hardware. Both the application code and kernel code execute in a single shared address space.
  • Previous
  • You're on page 1
  • Next