Best Real-Time Data Streaming Tools for Apache Spark

Compare the Top Real-Time Data Streaming Tools that integrate with Apache Spark as of December 2025

This a list of Real-Time Data Streaming tools that integrate with Apache Spark. Use the filters on the left to add additional filters for products that have integrations with Apache Spark. View the products that work with Apache Spark in the table below.

What are Real-Time Data Streaming Tools for Apache Spark?

Real-time data streaming tools enable organizations, big data and machine learning professionals, and data scientists to stream data in real time, and build data models when new data is created or ingested. Compare and read user reviews of the best Real-Time Data Streaming tools for Apache Spark currently available using the table below. This list is updated regularly.

  • 1
    PubSub+ Platform
    Solace PubSub+ Platform helps enterprises design, deploy and manage event-driven systems across hybrid and multi-cloud and IoT environments so they can be more event-driven and operate in real-time. The PubSub+ Platform includes the powerful PubSub+ Event Brokers, event management capabilities with PubSub+ Event Portal, as well as monitoring and integration capabilities all available via a single cloud console. PubSub+ allows easy creation of an event mesh, an interconnected network of event brokers, allowing for seamless and dynamic data movement across highly distributed network environments. PubSub+ Event Brokers can be deployed as fully managed cloud services, self-managed software in private cloud or on-premises environments, or as turnkey hardware appliances for unparalleled performance and low TCO. PubSub+ Event Portal is a complimentary toolset for design and governance of event-driven systems including both Solace and Kafka-based event broker environments.
  • 2
    Apache Doris

    Apache Doris

    The Apache Software Foundation

    Apache Doris is a modern data warehouse for real-time analytics. It delivers lightning-fast analytics on real-time data at scale. Push-based micro-batch and pull-based streaming data ingestion within a second. Storage engine with real-time upsert, append and pre-aggregation. Optimize for high-concurrency and high-throughput queries with columnar storage engine, MPP architecture, cost based query optimizer, vectorized execution engine. Federated querying of data lakes such as Hive, Iceberg and Hudi, and databases such as MySQL and PostgreSQL. Compound data types such as Array, Map and JSON. Variant data type to support auto data type inference of JSON data. NGram bloomfilter and inverted index for text searches. Distributed design for linear scalability. Workload isolation and tiered storage for efficient resource management. Supports shared-nothing clusters as well as separation of storage and compute.
    Starting Price: Free
  • 3
    Databricks Data Intelligence Platform
    The Databricks Data Intelligence Platform allows your entire organization to use data and AI. It’s built on a lakehouse to provide an open, unified foundation for all data and governance, and is powered by a Data Intelligence Engine that understands the uniqueness of your data. The winners in every industry will be data and AI companies. From ETL to data warehousing to generative AI, Databricks helps you simplify and accelerate your data and AI goals. Databricks combines generative AI with the unification benefits of a lakehouse to power a Data Intelligence Engine that understands the unique semantics of your data. This allows the Databricks Platform to automatically optimize performance and manage infrastructure in ways unique to your business. The Data Intelligence Engine understands your organization’s language, so search and discovery of new data is as easy as asking a question like you would to a coworker.
  • 4
    Spark Streaming

    Spark Streaming

    Apache Software Foundation

    Spark Streaming brings Apache Spark's language-integrated API to stream processing, letting you write streaming jobs the same way you write batch jobs. It supports Java, Scala and Python. Spark Streaming recovers both lost work and operator state (e.g. sliding windows) out of the box, without any extra code on your part. By running on Spark, Spark Streaming lets you reuse the same code for batch processing, join streams against historical data, or run ad-hoc queries on stream state. Build powerful interactive applications, not just analytics. Spark Streaming is developed as part of Apache Spark. It thus gets tested and updated with each Spark release. You can run Spark Streaming on Spark's standalone cluster mode or other supported cluster resource managers. It also includes a local run mode for development. In production, Spark Streaming uses ZooKeeper and HDFS for high availability.
  • 5
    VeloDB

    VeloDB

    VeloDB

    Powered by Apache Doris, VeloDB is a modern data warehouse for lightning-fast analytics on real-time data at scale. Push-based micro-batch and pull-based streaming data ingestion within seconds. Storage engine with real-time upsert、append and pre-aggregation. Unparalleled performance in both real-time data serving and interactive ad-hoc queries. Not just structured but also semi-structured data. Not just real-time analytics but also batch processing. Not just run queries against internal data but also work as a federate query engine to access external data lakes and databases. Distributed design to support linear scalability. Whether on-premise deployment or cloud service, separation or integration of storage and compute, resource usage can be flexibly and efficiently adjusted according to workload requirements. Built on and fully compatible with open source Apache Doris. Support MySQL protocol, functions, and SQL for easy integration with other data tools.
  • 6
    Baidu AI Cloud Stream Computing
    Baidu Stream Computing (BSC) provides real-time streaming data processing capacity with low delay, high throughput and high accuracy. It is fully compatible with Spark SQL; and can realize the logic data processing of complicated businesses through SQL statement, which is easy to use; provides users with full life cycle management for the streaming-oriented computing jobs. Integrate deeply with multiple storage products of Baidu AI Cloud as the upstream and downstream of stream computing, including Baidu Kafka, RDS, BOS, IOT Hub, Baidu ElasticSearch, TSDB, SCS and others. Provide a comprehensive job monitoring indicator, and the user can view the monitoring indicators of the job and set the alarm rules to protect the job.
  • Previous
  • You're on page 1
  • Next