Compare the Top Query Engines that integrate with Metabase as of October 2025

This a list of Query Engines that integrate with Metabase. Use the filters on the left to add additional filters for products that have integrations with Metabase. View the products that work with Metabase in the table below.

What are Query Engines for Metabase?

Query engines are software tools designed to retrieve and process data from databases or large datasets in response to user queries. They efficiently interpret and execute search requests, optimizing the retrieval process to deliver accurate and relevant results quickly. Query engines can handle structured, semi-structured, and unstructured data, making them versatile for various applications such as data analytics, business intelligence, and search engines. They often support complex query languages like SQL and can integrate with multiple data sources to provide comprehensive insights. By optimizing data retrieval, query engines enhance the performance and usability of data-driven applications and decision-making processes. Compare and read user reviews of the best Query Engines for Metabase currently available using the table below. This list is updated regularly.

  • 1
    Google Cloud BigQuery
    BigQuery features a highly optimized query engine that can handle large-scale queries on vast datasets with remarkable speed and efficiency. Its serverless architecture allows businesses to perform high-performance queries without the need for managing infrastructure or servers. BigQuery’s SQL-based query engine is familiar to most data analysts, making it easy to get started with complex data analysis. New customers can explore the query engine with $300 in free credits, enabling them to run a variety of queries and assess how BigQuery can support their analytical needs. The platform is also designed for scalability, ensuring that query performance remains consistent even as data grows.
    Starting Price: Free ($300 in free credits)
    View Software
    Visit Website
  • 2
    Snowflake

    Snowflake

    Snowflake

    Snowflake is a comprehensive AI Data Cloud platform designed to eliminate data silos and simplify data architectures, enabling organizations to get more value from their data. The platform offers interoperable storage that provides near-infinite scale and access to diverse data sources, both inside and outside Snowflake. Its elastic compute engine delivers high performance for any number of users, workloads, and data volumes with seamless scalability. Snowflake’s Cortex AI accelerates enterprise AI by providing secure access to leading large language models (LLMs) and data chat services. The platform’s cloud services automate complex resource management, ensuring reliability and cost efficiency. Trusted by over 11,000 global customers across industries, Snowflake helps businesses collaborate on data, build data applications, and maintain a competitive edge.
    Starting Price: $2 compute/month
  • 3
    Amazon Athena
    Amazon Athena is an interactive query service that makes it easy to analyze data in Amazon S3 using standard SQL. Athena is serverless, so there is no infrastructure to manage, and you pay only for the queries that you run. Athena is easy to use. Simply point to your data in Amazon S3, define the schema, and start querying using standard SQL. Most results are delivered within seconds. With Athena, there’s no need for complex ETL jobs to prepare your data for analysis. This makes it easy for anyone with SQL skills to quickly analyze large-scale datasets. Athena is out-of-the-box integrated with AWS Glue Data Catalog, allowing you to create a unified metadata repository across various services, crawl data sources to discover schemas and populate your Catalog with new and modified table and partition definitions, and maintain schema versioning.
  • 4
    ClickHouse

    ClickHouse

    ClickHouse

    ClickHouse is a fast open-source OLAP database management system. It is column-oriented and allows to generate analytical reports using SQL queries in real-time. ClickHouse's performance exceeds comparable column-oriented database management systems currently available on the market. It processes hundreds of millions to more than a billion rows and tens of gigabytes of data per single server per second. ClickHouse uses all available hardware to its full potential to process each query as fast as possible. Peak processing performance for a single query stands at more than 2 terabytes per second (after decompression, only used columns). In distributed setup reads are automatically balanced among healthy replicas to avoid increasing latency. ClickHouse supports multi-master asynchronous replication and can be deployed across multiple datacenters. All nodes are equal, which allows avoiding having single points of failure.
  • 5
    Timeplus

    Timeplus

    Timeplus

    Timeplus is a simple, powerful, and cost-efficient stream processing platform. All in a single binary, easily deployed anywhere. We help data teams process streaming and historical data quickly and intuitively, in organizations of all sizes and industries. Lightweight, single binary, without dependencies. End-to-end analytic streaming and historical functionalities. 1/10 the cost of similar open source frameworks. Turn real-time market and transaction data into real-time insights. Leverage append-only streams and key-value streams to monitor financial data. Implement real-time feature pipelines using Timeplus. One platform for all infrastructure logs, metrics, and traces, the three pillars supporting observability. In Timeplus, we support a wide range of data sources in our web console UI. You can also push data via REST API, or create external streams without copying data into Timeplus.
    Starting Price: $199 per month
  • 6
    Presto

    Presto

    Presto Foundation

    Presto is an open source distributed SQL query engine for running interactive analytic queries against data sources of all sizes ranging from gigabytes to petabytes. For data engineers who struggle with managing multiple query languages and interfaces to siloed databases and storage, Presto is the fast and reliable engine that provides one simple ANSI SQL interface for all your data analytics and your open lakehouse. Different engines for different workloads means you will have to re-platform down the road. With Presto, you get 1 familar ANSI SQL language and 1 engine for your data analytics so you don't need to graduate to another lakehouse engine. Presto can be used for interactive and batch workloads, small and large amounts of data, and scales from a few to thousands of users. Presto gives you one simple ANSI SQL interface for all of your data in various siloed data systems, helping you join your data ecosystem together.
  • 7
    Apache Spark

    Apache Spark

    Apache Software Foundation

    Apache Spark™ is a unified analytics engine for large-scale data processing. Apache Spark achieves high performance for both batch and streaming data, using a state-of-the-art DAG scheduler, a query optimizer, and a physical execution engine. Spark offers over 80 high-level operators that make it easy to build parallel apps. And you can use it interactively from the Scala, Python, R, and SQL shells. Spark powers a stack of libraries including SQL and DataFrames, MLlib for machine learning, GraphX, and Spark Streaming. You can combine these libraries seamlessly in the same application. Spark runs on Hadoop, Apache Mesos, Kubernetes, standalone, or in the cloud. It can access diverse data sources. You can run Spark using its standalone cluster mode, on EC2, on Hadoop YARN, on Mesos, or on Kubernetes. Access data in HDFS, Alluxio, Apache Cassandra, Apache HBase, Apache Hive, and hundreds of other data sources.
  • Previous
  • You're on page 1
  • Next