Compare the Top Query Engines that integrate with Hue as of November 2024

This a list of Query Engines that integrate with Hue. Use the filters on the left to add additional filters for products that have integrations with Hue. View the products that work with Hue in the table below.

What are Query Engines for Hue?

Query engines are software tools designed to retrieve and process data from databases or large datasets in response to user queries. They efficiently interpret and execute search requests, optimizing the retrieval process to deliver accurate and relevant results quickly. Query engines can handle structured, semi-structured, and unstructured data, making them versatile for various applications such as data analytics, business intelligence, and search engines. They often support complex query languages like SQL and can integrate with multiple data sources to provide comprehensive insights. By optimizing data retrieval, query engines enhance the performance and usability of data-driven applications and decision-making processes. Compare and read user reviews of the best Query Engines for Hue currently available using the table below. This list is updated regularly.

  • 1
    Google Cloud BigQuery
    BigQuery is a serverless, multicloud data warehouse that simplifies the process of working with all types of data so you can focus on getting valuable business insights quickly. At the core of Google’s data cloud, BigQuery allows you to simplify data integration, cost effectively and securely scale analytics, share rich data experiences with built-in business intelligence, and train and deploy ML models with a simple SQL interface, helping to make your organization’s operations more data-driven.
    Starting Price: $0.04 per slot hour
    View Software
    Visit Website
  • 2
    Snowflake

    Snowflake

    Snowflake

    Your cloud data platform. Secure and easy access to any data with infinite scalability. Get all the insights from all your data by all your users, with the instant and near-infinite performance, concurrency and scale your organization requires. Seamlessly share and consume shared data to collaborate across your organization, and beyond, to solve your toughest business problems in real time. Boost the productivity of your data professionals and shorten your time to value in order to deliver modern and integrated data solutions swiftly from anywhere in your organization. Whether you’re moving data into Snowflake or extracting insight out of Snowflake, our technology partners and system integrators will help you deploy Snowflake for your success.
    Starting Price: $40.00 per month
  • 3
    Apache Hive

    Apache Hive

    Apache Software Foundation

    The Apache Hive data warehouse software facilitates reading, writing, and managing large datasets residing in distributed storage using SQL. Structure can be projected onto data already in storage. A command line tool and JDBC driver are provided to connect users to Hive. Apache Hive is an open source project run by volunteers at the Apache Software Foundation. Previously it was a subproject of Apache® Hadoop®, but has now graduated to become a top-level project of its own. We encourage you to learn about the project and contribute your expertise. Traditional SQL queries must be implemented in the MapReduce Java API to execute SQL applications and queries over distributed data. Hive provides the necessary SQL abstraction to integrate SQL-like queries (HiveQL) into the underlying Java without the need to implement queries in the low-level Java API.
  • 4
    ClickHouse

    ClickHouse

    ClickHouse

    ClickHouse is a fast open-source OLAP database management system. It is column-oriented and allows to generate analytical reports using SQL queries in real-time. ClickHouse's performance exceeds comparable column-oriented database management systems currently available on the market. It processes hundreds of millions to more than a billion rows and tens of gigabytes of data per single server per second. ClickHouse uses all available hardware to its full potential to process each query as fast as possible. Peak processing performance for a single query stands at more than 2 terabytes per second (after decompression, only used columns). In distributed setup reads are automatically balanced among healthy replicas to avoid increasing latency. ClickHouse supports multi-master asynchronous replication and can be deployed across multiple datacenters. All nodes are equal, which allows avoiding having single points of failure.
  • 5
    Trino

    Trino

    Trino

    Trino is a query engine that runs at ludicrous speed. Fast-distributed SQL query engine for big data analytics that helps you explore your data universe. Trino is a highly parallel and distributed query engine, that is built from the ground up for efficient, low-latency analytics. The largest organizations in the world use Trino to query exabyte-scale data lakes and massive data warehouses alike. Supports diverse use cases, ad-hoc analytics at interactive speeds, massive multi-hour batch queries, and high-volume apps that perform sub-second queries. Trino is an ANSI SQL-compliant query engine, that works with BI tools such as R, Tableau, Power BI, Superset, and many others. You can natively query data in Hadoop, S3, Cassandra, MySQL, and many others, without the need for complex, slow, and error-prone processes for copying the data. Access data from multiple systems within a single query.
    Starting Price: Free
  • 6
    Apache Drill

    Apache Drill

    The Apache Software Foundation

    Schema-free SQL Query Engine for Hadoop, NoSQL and Cloud Storage
  • 7
    Apache Spark

    Apache Spark

    Apache Software Foundation

    Apache Spark™ is a unified analytics engine for large-scale data processing. Apache Spark achieves high performance for both batch and streaming data, using a state-of-the-art DAG scheduler, a query optimizer, and a physical execution engine. Spark offers over 80 high-level operators that make it easy to build parallel apps. And you can use it interactively from the Scala, Python, R, and SQL shells. Spark powers a stack of libraries including SQL and DataFrames, MLlib for machine learning, GraphX, and Spark Streaming. You can combine these libraries seamlessly in the same application. Spark runs on Hadoop, Apache Mesos, Kubernetes, standalone, or in the cloud. It can access diverse data sources. You can run Spark using its standalone cluster mode, on EC2, on Hadoop YARN, on Mesos, or on Kubernetes. Access data in HDFS, Alluxio, Apache Cassandra, Apache HBase, Apache Hive, and hundreds of other data sources.
  • 8
    ksqlDB

    ksqlDB

    Confluent

    Now that your data is in motion, it’s time to make sense of it. Stream processing enables you to derive instant insights from your data streams, but setting up the infrastructure to support it can be complex. That’s why Confluent developed ksqlDB, the database purpose-built for stream processing applications. Make your data immediately actionable by continuously processing streams of data generated throughout your business. ksqlDB’s intuitive syntax lets you quickly access and augment data in Kafka, enabling development teams to seamlessly create real-time innovative customer experiences and fulfill data-driven operational needs. ksqlDB offers a single solution for collecting streams of data, enriching them, and serving queries on new derived streams and tables. That means less infrastructure to deploy, maintain, scale, and secure. With less moving parts in your data architecture, you can focus on what really matters -- innovation.
  • Previous
  • You're on page 1
  • Next