Compare the Top Query Engines that integrate with Hadoop as of December 2025

This a list of Query Engines that integrate with Hadoop. Use the filters on the left to add additional filters for products that have integrations with Hadoop. View the products that work with Hadoop in the table below.

What are Query Engines for Hadoop?

Query engines are software tools designed to retrieve and process data from databases or large datasets in response to user queries. They efficiently interpret and execute search requests, optimizing the retrieval process to deliver accurate and relevant results quickly. Query engines can handle structured, semi-structured, and unstructured data, making them versatile for various applications such as data analytics, business intelligence, and search engines. They often support complex query languages like SQL and can integrate with multiple data sources to provide comprehensive insights. By optimizing data retrieval, query engines enhance the performance and usability of data-driven applications and decision-making processes. Compare and read user reviews of the best Query Engines for Hadoop currently available using the table below. This list is updated regularly.

  • 1
    StarTree

    StarTree

    StarTree

    StarTree, powered by Apache Pinot™, is a fully managed real-time analytics platform built for customer-facing applications that demand instant insights on the freshest data. Unlike traditional data warehouses or OLTP databases—optimized for back-office reporting or transactions—StarTree is engineered for real-time OLAP at true scale, meaning: - Data Volume: query performance sustained at petabyte scale - Ingest Rates: millions of events per second, continuously indexed for freshness - Concurrency: thousands to millions of simultaneous users served with sub-second latency With StarTree, businesses deliver always-fresh insights at interactive speed, enabling applications that personalize, monitor, and act in real time.
    Starting Price: Free
  • 2
    Trino

    Trino

    Trino

    Trino is a query engine that runs at ludicrous speed. Fast-distributed SQL query engine for big data analytics that helps you explore your data universe. Trino is a highly parallel and distributed query engine, that is built from the ground up for efficient, low-latency analytics. The largest organizations in the world use Trino to query exabyte-scale data lakes and massive data warehouses alike. Supports diverse use cases, ad-hoc analytics at interactive speeds, massive multi-hour batch queries, and high-volume apps that perform sub-second queries. Trino is an ANSI SQL-compliant query engine, that works with BI tools such as R, Tableau, Power BI, Superset, and many others. You can natively query data in Hadoop, S3, Cassandra, MySQL, and many others, without the need for complex, slow, and error-prone processes for copying the data. Access data from multiple systems within a single query.
    Starting Price: Free
  • 3
    Apache Impala
    Impala provides low latency and high concurrency for BI/analytic queries on the Hadoop ecosystem, including Iceberg, open data formats, and most cloud storage options. Impala also scales linearly, even in multitenant environments. Impala is integrated with native Hadoop security and Kerberos for authentication, and via the Ranger module, you can ensure that the right users and applications are authorized for the right data. Utilize the same file and data formats and metadata, security, and resource management frameworks as your Hadoop deployment, with no redundant infrastructure or data conversion/duplication. For Apache Hive users, Impala utilizes the same metadata and ODBC driver. Like Hive, Impala supports SQL, so you don't have to worry about reinventing the implementation wheel. With Impala, more users, whether using SQL queries or BI applications, can interact with more data through a single repository and metadata stored from source through analysis.
    Starting Price: Free
  • 4
    IBM Db2 Big SQL
    A hybrid SQL-on-Hadoop engine delivering advanced, security-rich data query across enterprise big data sources, including Hadoop, object storage and data warehouses. IBM Db2 Big SQL is an enterprise-grade, hybrid ANSI-compliant SQL-on-Hadoop engine, delivering massively parallel processing (MPP) and advanced data query. Db2 Big SQL offers a single database connection or query for disparate sources such as Hadoop HDFS and WebHDFS, RDMS, NoSQL databases, and object stores. Benefit from low latency, high performance, data security, SQL compatibility, and federation capabilities to do ad hoc and complex queries. Db2 Big SQL is now available in 2 variations. It can be integrated with Cloudera Data Platform, or accessed as a cloud-native service on the IBM Cloud Pak® for Data platform. Access and analyze data and perform queries on batch and real-time data across sources, like Hadoop, object stores and data warehouses.
  • 5
    Apache Drill

    Apache Drill

    The Apache Software Foundation

    Schema-free SQL Query Engine for Hadoop, NoSQL and Cloud Storage
  • 6
    Apache Spark

    Apache Spark

    Apache Software Foundation

    Apache Spark™ is a unified analytics engine for large-scale data processing. Apache Spark achieves high performance for both batch and streaming data, using a state-of-the-art DAG scheduler, a query optimizer, and a physical execution engine. Spark offers over 80 high-level operators that make it easy to build parallel apps. And you can use it interactively from the Scala, Python, R, and SQL shells. Spark powers a stack of libraries including SQL and DataFrames, MLlib for machine learning, GraphX, and Spark Streaming. You can combine these libraries seamlessly in the same application. Spark runs on Hadoop, Apache Mesos, Kubernetes, standalone, or in the cloud. It can access diverse data sources. You can run Spark using its standalone cluster mode, on EC2, on Hadoop YARN, on Mesos, or on Kubernetes. Access data in HDFS, Alluxio, Apache Cassandra, Apache HBase, Apache Hive, and hundreds of other data sources.
  • 7
    Baidu Palo

    Baidu Palo

    Baidu AI Cloud

    Palo helps enterprises to create the PB-level MPP architecture data warehouse service within several minutes and import the massive data from RDS, BOS, and BMR. Thus, Palo can perform the multi-dimensional analytics of big data. Palo is compatible with mainstream BI tools. Data analysts can analyze and display the data visually and gain insights quickly to assist decision-making. It has the industry-leading MPP query engine, with column storage, intelligent index,and vector execution functions. It can also provide in-library analytics, window functions, and other advanced analytics functions. You can create a materialized view and change the table structure without the suspension of service. It supports flexible and efficient data recovery.
  • Previous
  • You're on page 1
  • Next