TFLearn
TFlearn is a modular and transparent deep learning library built on top of Tensorflow. It was designed to provide a higher-level API to TensorFlow in order to facilitate and speed up experimentations while remaining fully transparent and compatible with it. Easy-to-use and understand high-level API for implementing deep neural networks, with tutorial and examples. Fast prototyping through highly modular built-in neural network layers, regularizers, optimizers, metrics. Full transparency over Tensorflow. All functions are built over tensors and can be used independently of TFLearn. Powerful helper functions to train any TensorFlow graph, with support of multiple inputs, outputs, and optimizers. Easy and beautiful graph visualization, with details about weights, gradients, activations and more. The high-level API currently supports most of the recent deep learning models, such as Convolutions, LSTM, BiRNN, BatchNorm, PReLU, Residual networks, Generative networks.
Learn more
TF-Agents
TensorFlow Agents (TF-Agents) is a comprehensive library designed for reinforcement learning in TensorFlow. It simplifies the design, implementation, and testing of new RL algorithms by providing well-tested modular components that can be modified and extended. TF-Agents enables fast code iteration with good test integration and benchmarking. It includes a variety of agents such as DQN, PPO, REINFORCE, SAC, and TD3, each with their respective networks and policies. It also offers tools for building custom environments, policies, and networks, facilitating the creation of complex RL pipelines. TF-Agents supports both Python and TensorFlow environments, allowing for flexibility in development and deployment. It is compatible with TensorFlow 2.x and provides tutorials and guides to help users get started with training agents on standard environments like CartPole.
Learn more
TensorBoard
TensorBoard is TensorFlow's comprehensive visualization toolkit designed to facilitate machine learning experimentation. It enables users to track and visualize metrics such as loss and accuracy, visualize the model graph (operations and layers), view histograms of weights, biases, or other tensors as they change over time, project embeddings to a lower-dimensional space, and display images, text, and audio data. Additionally, TensorBoard offers profiling capabilities to optimize TensorFlow programs. These features collectively provide a suite of tools to understand, debug, and optimize TensorFlow programs, enhancing the machine learning workflow. In machine learning, to improve something you often need to be able to measure it. TensorBoard is a tool for providing the measurements and visualizations needed during the machine learning workflow. It enables tracking experiment metrics, visualizing the model graph, and projecting embeddings to a lower dimensional space.
Learn more
BentoML
Serve your ML model in any cloud in minutes. Unified model packaging format enabling both online and offline serving on any platform. 100x the throughput of your regular flask-based model server, thanks to our advanced micro-batching mechanism. Deliver high-quality prediction services that speak the DevOps language and integrate perfectly with common infrastructure tools. Unified format for deployment. High-performance model serving. DevOps best practices baked in. The service uses the BERT model trained with the TensorFlow framework to predict movie reviews' sentiment. DevOps-free BentoML workflow, from prediction service registry, deployment automation, to endpoint monitoring, all configured automatically for your team. A solid foundation for running serious ML workloads in production. Keep all your team's models, deployments, and changes highly visible and control access via SSO, RBAC, client authentication, and auditing logs.
Learn more