Alternatives to ZeroEntropy

Compare ZeroEntropy alternatives for your business or organization using the curated list below. SourceForge ranks the best alternatives to ZeroEntropy in 2026. Compare features, ratings, user reviews, pricing, and more from ZeroEntropy competitors and alternatives in order to make an informed decision for your business.

  • 1
    Vertex AI
    Build, deploy, and scale machine learning (ML) models faster, with fully managed ML tools for any use case. Through Vertex AI Workbench, Vertex AI is natively integrated with BigQuery, Dataproc, and Spark. You can use BigQuery ML to create and execute machine learning models in BigQuery using standard SQL queries on existing business intelligence tools and spreadsheets, or you can export datasets from BigQuery directly into Vertex AI Workbench and run your models from there. Use Vertex Data Labeling to generate highly accurate labels for your data collection. Vertex AI Agent Builder enables developers to create and deploy enterprise-grade generative AI applications. It offers both no-code and code-first approaches, allowing users to build AI agents using natural language instructions or by leveraging frameworks like LangChain and LlamaIndex.
    Compare vs. ZeroEntropy View Software
    Visit Website
  • 2
    Azure AI Search
    Deliver high-quality responses with a vector database built for advanced retrieval augmented generation (RAG) and modern search. Focus on exponential growth with an enterprise-ready vector database that comes with security, compliance, and responsible AI practices built in. Build better applications with sophisticated retrieval strategies backed by decades of research and customer validation. Quickly deploy your generative AI app with seamless platform and data integrations for data sources, AI models, and frameworks. Automatically upload data from a wide range of supported Azure and third-party sources. Streamline vector data processing with built-in extraction, chunking, enrichment, and vectorization, all in one flow. Support for multivector, hybrid, multilingual, and metadata filtering. Move beyond vector-only search with keyword match scoring, reranking, geospatial search, and autocomplete.
    Starting Price: $0.11 per hour
  • 3
    Qdrant

    Qdrant

    Qdrant

    Qdrant is a vector similarity engine & vector database. It deploys as an API service providing search for the nearest high-dimensional vectors. With Qdrant, embeddings or neural network encoders can be turned into full-fledged applications for matching, searching, recommending, and much more! Provides the OpenAPI v3 specification to generate a client library in almost any programming language. Alternatively utilise ready-made client for Python or other programming languages with additional functionality. Implement a unique custom modification of the HNSW algorithm for Approximate Nearest Neighbor Search. Search with a State-of-the-Art speed and apply search filters without compromising on results. Support additional payload associated with vectors. Not only stores payload but also allows filter results based on payload values.
  • 4
    Vectara

    Vectara

    Vectara

    Vectara is LLM-powered search-as-a-service. The platform provides a complete ML search pipeline from extraction and indexing to retrieval, re-ranking and calibration. Every element of the platform is API-addressable. Developers can embed the most advanced NLP models for app and site search in minutes. Vectara automatically extracts text from PDF and Office to JSON, HTML, XML, CommonMark, and many more. Encode at scale with cutting edge zero-shot models using deep neural networks optimized for language understanding. Segment data into any number of indexes storing vector encodings optimized for low latency and high recall. Recall candidate results from millions of documents using cutting-edge, zero-shot neural network models. Increase the precision of retrieved results with cross-attentional neural networks to merge and reorder results. Zero in on the true likelihoods that the retrieved response represents a probable answer to the query.
  • 5
    Mixedbread

    Mixedbread

    Mixedbread

    Mixedbread is a fully-managed AI search engine that allows users to build production-ready AI search and Retrieval-Augmented Generation (RAG) applications. It offers a complete AI search stack, including vector stores, embedding and reranking models, and document parsing. Users can transform raw data into intelligent search experiences that power AI agents, chatbots, and knowledge systems without the complexity. It integrates with tools like Google Drive, SharePoint, Notion, and Slack. Its vector stores enable users to build production search engines in minutes, supporting over 100 languages. Mixedbread's embedding and reranking models have achieved over 50 million downloads and outperform OpenAI in semantic search and RAG tasks while remaining open-source and cost-effective. The document parser extracts text, tables, and layouts from PDFs, images, and complex documents, providing clean, AI-ready content without manual preprocessing.
  • 6
    Voyage AI

    Voyage AI

    MongoDB

    Voyage AI provides best-in-class embedding models and rerankers designed to supercharge search and retrieval for unstructured data. Its technology powers high-quality Retrieval-Augmented Generation (RAG) by improving how relevant context is retrieved before responses are generated. Voyage AI offers general-purpose, domain-specific, and company-specific models to support a wide range of use cases. The models are optimized for accuracy, low latency, and reduced costs through shorter vector dimensions. With long-context support of up to 32K tokens, Voyage AI enables deeper understanding of complex documents. The platform is modular and integrates easily with any vector database or large language model. Voyage AI is trusted by industry leaders to deliver reliable, factual AI outputs at scale.
  • 7
    BGE

    BGE

    BGE

    BGE (BAAI General Embedding) is a comprehensive retrieval toolkit designed for search and Retrieval-Augmented Generation (RAG) applications. It offers inference, evaluation, and fine-tuning capabilities for embedding models and rerankers, facilitating the development of advanced information retrieval systems. The toolkit includes components such as embedders and rerankers, which can be integrated into RAG pipelines to enhance search relevance and accuracy. BGE supports various retrieval methods, including dense retrieval, multi-vector retrieval, and sparse retrieval, providing flexibility to handle different data types and retrieval scenarios. The models are available through platforms like Hugging Face, and the toolkit provides tutorials and APIs to assist users in implementing and customizing their retrieval systems. By leveraging BGE, developers can build robust and efficient search solutions tailored to their specific needs.
  • 8
    NVIDIA NeMo Retriever
    NVIDIA NeMo Retriever is a collection of microservices for building multimodal extraction, reranking, and embedding pipelines with high accuracy and maximum data privacy. It delivers quick, context-aware responses for AI applications like advanced retrieval-augmented generation (RAG) and agentic AI workflows. As part of the NVIDIA NeMo platform and built with NVIDIA NIM, NeMo Retriever allows developers to flexibly leverage these microservices to connect AI applications to large enterprise datasets wherever they reside and fine-tune them to align with specific use cases. NeMo Retriever provides components for building data extraction and information retrieval pipelines. The pipeline extracts structured and unstructured data (e.g., text, charts, tables), converts it to text, and filters out duplicates. A NeMo Retriever embedding NIM converts the chunks into embeddings and stores them in a vector database, accelerated by NVIDIA cuVS, for enhanced performance and speed of indexing.
  • 9
    Entropy Keycrypt

    Entropy Keycrypt

    Quantum Entropy

    Protect your essential digital assets with Entropy, offering a seamless and secure transition to your trusted circle in unforeseen circumstances. User-Friendly Security Entropy enables you to securely partition important information into discrete shares, each of which reveals nothing about your secret without the others. Distribute these to a select group of trusted individuals, who can then store them offline for added security. Long-Term Resilience With its robust security features, including 256-bit encryption, Entropy is well-suited for durable, decentralized offline storage, safeguarding your data from both online and specific offline threats.
  • 10
    Pinecone Rerank v0
    Pinecone Rerank V0 is a cross-encoder model optimized for precision in reranking tasks, enhancing enterprise search and retrieval-augmented generation (RAG) systems. It processes queries and documents together to capture fine-grained relevance, assigning a relevance score from 0 to 1 for each query-document pair. The model's maximum context length is set to 512 tokens to preserve ranking quality. Evaluations on the BEIR benchmark demonstrated that Pinecone Rerank V0 achieved the highest average NDCG@10, outperforming other models on 6 out of 12 datasets. For instance, it showed up to a 60% boost on the Fever dataset compared to Google Semantic Ranker and over 40% on the Climate-Fever dataset relative to cohere-v3-multilingual or voyageai-rerank-2. The model is accessible through Pinecone Inference and is available to all users in public preview.
    Starting Price: $25 per month
  • 11
    Cohere Rerank
    Cohere Rerank is a powerful semantic search tool that refines enterprise search and retrieval by precisely ranking results. It processes a query and a list of documents, ordering them from most to least semantically relevant, and assigns a relevance score between 0 and 1 to each document. This ensures that only the most pertinent documents are passed into your RAG pipeline and agentic workflows, reducing token use, minimizing latency, and boosting accuracy. The latest model, Rerank v3.5, supports English and multilingual documents, as well as semi-structured data like JSON, with a context length of 4096 tokens. Long documents are automatically chunked, and the highest relevance score among chunks is used for ranking. Rerank can be integrated into existing keyword or semantic search systems with minimal code changes, enhancing the relevance of search results. It is accessible via Cohere's API and is compatible with various platforms, including Amazon Bedrock and SageMaker.
  • 12
    ColBERT

    ColBERT

    Future Data Systems

    ColBERT is a fast and accurate retrieval model, enabling scalable BERT-based search over large text collections in tens of milliseconds. It relies on fine-grained contextual late interaction: it encodes each passage into a matrix of token-level embeddings. At search time, it embeds every query into another matrix and efficiently finds passages that contextually match the query using scalable vector-similarity (MaxSim) operators. These rich interactions allow ColBERT to surpass the quality of single-vector representation models while scaling efficiently to large corpora. The toolkit includes components for retrieval, reranking, evaluation, and response analysis, facilitating end-to-end workflows. ColBERT integrates with Pyserini for retrieval and provides integrated evaluation for multi-stage pipelines. It also includes a module for detailed analysis of input prompts and LLM responses, addressing reliability concerns with LLM APIs and non-deterministic behavior in Mixture-of-Experts.
  • 13
    Nomic Embed
    Nomic Embed is a suite of open source, high-performance embedding models designed for various applications, including multilingual text, multimodal content, and code. The ecosystem includes models like Nomic Embed Text v2, which utilizes a Mixture-of-Experts (MoE) architecture to support over 100 languages with efficient inference using 305M active parameters. Nomic Embed Text v1.5 offers variable embedding dimensions (64 to 768) through Matryoshka Representation Learning, enabling developers to balance performance and storage needs. For multimodal applications, Nomic Embed Vision v1.5 aligns with the text models to provide a unified latent space for text and image data, facilitating seamless multimodal search. Additionally, Nomic Embed Code delivers state-of-the-art performance on code embedding tasks across multiple programming languages.
  • 14
    Jina Reranker
    Jina Reranker v2 is a state-of-the-art reranker designed for Agentic Retrieval-Augmented Generation (RAG) systems. It enhances search relevance and RAG accuracy by reordering search results based on deeper semantic understanding. It supports over 100 languages, enabling multilingual retrieval regardless of the query language. It is optimized for function-calling and code search, making it ideal for applications requiring precise function signatures and code snippet retrieval. Jina Reranker v2 also excels in ranking structured data, such as tables, by understanding the downstream intent to query structured databases like MySQL or MongoDB. With a 6x speedup over its predecessor, it offers ultra-fast inference, processing documents in milliseconds. The model is available via Jina's Reranker API and can be integrated into existing applications using platforms like Langchain and LlamaIndex.
  • 15
    Aurora Drug Discovery

    Aurora Drug Discovery

    Aurora Fine Chemicals

    Aurora employs quantum mechanics, thermodynamics, and an advanced continuous water model for solvation effects to calculate ligand´s binding affinities. This approach differs dramatically from scoring functions that are commonly used for binding affinity predictions. By including the entropy and aqueous electrostatic contributions in to the calculations directly, Aurora algorithms produce much more accurate and robust values of binding free energies. Interaction of a ligand with a protein is characterized by the value of binding free energy. The free energy (F) is the thermodynamic quantity that is directly related to experimentally measurable value of inhibition constant (IC50) and depends on electrostatic, quantum, aqueous solvation forces, as well as on statistical properties of interacting molecules. There are two major contributing quantities leading to non-additivity in F: 1) the electrostatic and solvation energy and 2) the entropy.
  • 16
    Vespa

    Vespa

    Vespa.ai

    Vespa is forBig Data + AI, online. At any scale, with unbeatable performance. To build production-worthy online applications that combine data and AI, you need more than point solutions: You need a platform that integrates data and compute to achieve true scalability and availability - and which does this without limiting your freedom to innovate. Only Vespa does this. Vespa is a fully featured search engine and vector database. It supports vector search (ANN), lexical search, and search in structured data, all in the same query. Users can easily build recommendation applications on Vespa. Integrated machine-learned model inference allows you to apply AI to make sense of your data in real-time. Together with Vespa's proven scaling and high availability, this empowers you to create production-ready search applications at any scale and with any combination of features.
  • 17
    Cohere

    Cohere

    Cohere AI

    Cohere is an enterprise AI platform that enables developers and businesses to build powerful language-based applications. Specializing in large language models (LLMs), Cohere provides solutions for text generation, summarization, and semantic search. Their model offerings include the Command family for high-performance language tasks and Aya Expanse for multilingual applications across 23 languages. Focused on security and customization, Cohere allows flexible deployment across major cloud providers, private cloud environments, or on-premises setups to meet diverse enterprise needs. The company collaborates with industry leaders like Oracle and Salesforce to integrate generative AI into business applications, improving automation and customer engagement. Additionally, Cohere For AI, their research lab, advances machine learning through open-source projects and a global research community.
  • 18
    Jina AI

    Jina AI

    Jina AI

    Empower businesses and developers to create cutting-edge neural search, generative AI, and multimodal services using state-of-the-art LMOps, MLOps and cloud-native technologies. Multimodal data is everywhere: from simple tweets to photos on Instagram, short videos on TikTok, audio snippets, Zoom meeting records, PDFs with figures, 3D meshes in games. It is rich and powerful, but that power often hides behind different modalities and incompatible data formats. To enable high-level AI applications, one needs to solve search and create first. Neural Search uses AI to find what you need. A description of a sunrise can match a picture, or a photo of a rose can match a song. Generative AI/Creative AI uses AI to make what you need. It can create an image from a description, or write poems from a picture.
  • 19
    RankLLM

    RankLLM

    Castorini

    RankLLM is a Python toolkit for reproducible information retrieval research using rerankers, with a focus on listwise reranking. It offers a suite of rerankers, pointwise models like MonoT5, pairwise models like DuoT5, and listwise models compatible with vLLM, SGLang, or TensorRT-LLM. Additionally, it supports RankGPT and RankGemini variants, which are proprietary listwise rerankers. It includes modules for retrieval, reranking, evaluation, and response analysis, facilitating end-to-end workflows. RankLLM integrates with Pyserini for retrieval and provides integrated evaluation for multi-stage pipelines. It also includes a module for detailed analysis of input prompts and LLM responses, addressing reliability concerns with LLM APIs and non-deterministic behavior in Mixture-of-Experts (MoE) models. The toolkit supports various backends, including SGLang and TensorRT-LLM, and is compatible with a wide range of LLMs.
  • 20
    AI-Q NVIDIA Blueprint
    Create AI agents that reason, plan, reflect, and refine to produce high-quality reports based on source materials of your choice. An AI research agent, informed by many data sources, can synthesize hours of research in minutes. The AI-Q NVIDIA Blueprint enables developers to build AI agents that use reasoning and connect to many data sources and tools to distill in-depth source materials with efficiency and precision. Using AI-Q, agents summarize large data sets, generating tokens 5x faster and ingesting petabyte-scale data 15x faster with better semantic accuracy. Multimodal PDF data extraction and retrieval with NVIDIA NeMo Retriever, 15x faster ingestion of enterprise data, 3x lower retrieval latency, multilingual and cross-lingual, reranking to further improve accuracy, and GPU-accelerated index creation and search.
  • 21
    BSI Compliance Manager
    British Standards Institution (BSI) Compliance Management is a modular compliance software solution for business standards. Powered by Entropy Software, BSI Compliance Management improves the corrective action management process and increases the productivity of your entire audit. This soluiton enables users to schedule, conduct, and report audits as well as keeps track of actions throughout the organization in order to drive business improvement.
  • 22
    MonoQwen-Vision
    MonoQwen2-VL-v0.1 is the first visual document reranker designed to enhance the quality of retrieved visual documents in Retrieval-Augmented Generation (RAG) pipelines. Traditional RAG approaches rely on converting documents into text using Optical Character Recognition (OCR), which can be time-consuming and may result in loss of information, especially for non-textual elements like graphs and tables. MonoQwen2-VL-v0.1 addresses these limitations by leveraging Visual Language Models (VLMs) that process images directly, eliminating the need for OCR and preserving the integrity of visual content. This reranker operates in a two-stage pipeline, initially, it uses separate encoding to generate a pool of candidate documents, followed by a cross-encoding model that reranks these candidates based on their relevance to the query. By training a Low-Rank Adaptation (LoRA) on top of the Qwen2-VL-2B-Instruct model, MonoQwen2-VL-v0.1 achieves high performance without significant memory overhead.
  • 23
    QSE

    QSE

    QSE Group

    QSE Group delivers quantum-resilient cybersecurity solutions designed to protect sensitive data from both current and future threats, including quantum computing. Using post-quantum cryptographic algorithms aligned with NIST standards, QSE secures data through encryption, key management, and secure communications. Built with an API-first design, it integrates easily into existing cloud, on-prem, or hybrid environments. Core features include secure entropy generation, zero trust policy enforcement, and compatibility with identity systems and SIEM tools. QSE also supports white-label deployment for SaaS vendors and MSPs. With real-time monitoring, compliance-ready reporting, and applications across finance, healthcare, legal, and government sectors, QSE enables future-proof protection without disrupting current infrastructure. It's a practical, scalable solution for organizations serious about long-term data security.
    Starting Price: $19.90/month
  • 24
    Randamu

    Randamu

    Randamu

    Randamu delivers decentralized cryptographic infrastructure that powers the next generation of secure, verifiable, and automated digital systems. Serving Web3 developers, protocols, and blockchains, Randamu offers essential building blocks such as publicly verifiable randomness, time-locked encryption, and cross-chain orchestration. Its flagship stewardship of the Drand protocol and the League of Entropy enables trust-minimized coordination and transparency across distributed systems.
  • 25
    RankGPT

    RankGPT

    Weiwei Sun

    RankGPT is a Python toolkit designed to explore the use of generative Large Language Models (LLMs) like ChatGPT and GPT-4 for relevance ranking in Information Retrieval (IR). It introduces methods such as instructional permutation generation and a sliding window strategy to enable LLMs to effectively rerank documents. It supports various LLMs, including GPT-3.5, GPT-4, Claude, Cohere, and Llama2 via LiteLLM. RankGPT provides modules for retrieval, reranking, evaluation, and response analysis, facilitating end-to-end workflows. It includes a module for detailed analysis of input prompts and LLM responses, addressing reliability concerns with LLM APIs and non-deterministic behavior in Mixture-of-Experts (MoE) models. The toolkit supports various backends, including SGLang and TensorRT-LLM, and is compatible with a wide range of LLMs. RankGPT's Model Zoo includes models like LiT5 and MonoT5, hosted on Hugging Face.
  • 26
    ReclaiMe Pro

    ReclaiMe Pro

    ReclaiMe Data Recovery

    Following is the complete list of ReclaiMe Pro features and capabilities. Reads common Windows, Linux, and MacOS partitions: MBR, GPT, APM Reads complex partitions: Windows Dynamic Disks (LDM), MD-RAID (all levels), LVM (stripe/span only, no LVM RAID5). Automatic sector size detection on disk images and clones where sector size of the copy does not match the sector size of the original. Detect blank disks by measuring the ratio of non-zero data on disks, partitions, regions, RAIDs, and virtual RAIDs. Separate disks from different RAID sets by measuring average entropy. Detect parity on the disk set and identify hotspare disk by doing parity analysis. Two-pass imaging: first pass quickly images the healthy areas, the second pass thoroughly retries the areas of the bad sector.
    Starting Price: $799 per year
  • 27
    TILDE

    TILDE

    ielab

    TILDE (Term Independent Likelihood moDEl) is a passage re-ranking and expansion framework built on BERT, designed to enhance retrieval performance by combining sparse term matching with deep contextual representations. The original TILDE model pre-computes term weights across the entire BERT vocabulary, which can lead to large index sizes. To address this, TILDEv2 introduces a more efficient approach by computing term weights only for terms present in expanded passages, resulting in indexes that are 99% smaller than those of the original TILDE. This efficiency is achieved by leveraging TILDE as a passage expansion model, where passages are expanded using top-k terms (e.g., top 200) to enrich their content. It provides scripts for indexing collections, re-ranking BM25 results, and training models using datasets like MS MARCO.
  • 28
    txtai

    txtai

    NeuML

    txtai is an all-in-one open source embeddings database designed for semantic search, large language model orchestration, and language model workflows. It unifies vector indexes (both sparse and dense), graph networks, and relational databases, providing a robust foundation for vector search and serving as a powerful knowledge source for LLM applications. With txtai, users can build autonomous agents, implement retrieval augmented generation processes, and develop multi-modal workflows. Key features include vector search with SQL support, object storage integration, topic modeling, graph analysis, and multimodal indexing capabilities. It supports the creation of embeddings for various data types, including text, documents, audio, images, and video. Additionally, txtai offers pipelines powered by language models that handle tasks such as LLM prompting, question-answering, labeling, transcription, translation, and summarization.
  • 29
    voyage-code-3
    Voyage AI introduces voyage-code-3, a next-generation embedding model optimized for code retrieval. It outperforms OpenAI-v3-large and CodeSage-large by an average of 13.80% and 16.81% on a suite of 32 code retrieval datasets, respectively. It supports embeddings of 2048, 1024, 512, and 256 dimensions and offers multiple embedding quantization options, including float (32-bit), int8 (8-bit signed integer), uint8 (8-bit unsigned integer), binary (bit-packed int8), and ubinary (bit-packed uint8). With a 32 K-token context length, it surpasses OpenAI's 8K and CodeSage Large's 1K context lengths. Voyage-code-3 employs Matryoshka learning to create embeddings with a nested family of various lengths within a single vector. This allows users to vectorize documents into a 2048-dimensional vector and later use shorter versions (e.g., 256, 512, or 1024 dimensions) without re-invoking the embedding model.
  • 30
    Cohere Embed
    Cohere's Embed is a leading multimodal embedding platform designed to transform text, images, or a combination of both into high-quality vector representations. These embeddings are optimized for semantic search, retrieval-augmented generation, classification, clustering, and agentic AI applications.​ The latest model, embed-v4.0, supports mixed-modality inputs, allowing users to combine text and images into a single embedding. It offers Matryoshka embeddings with configurable dimensions of 256, 512, 1024, or 1536, enabling flexibility in balancing performance and resource usage. With a context length of up to 128,000 tokens, embed-v4.0 is well-suited for processing large documents and complex data structures. It also supports compressed embedding types, including float, int8, uint8, binary, and ubinary, facilitating efficient storage and faster retrieval in vector databases. Multilingual support spans over 100 languages, making it a versatile tool for global applications.
    Starting Price: $0.47 per image
  • 31
    Exa

    Exa

    Exa.ai

    The Exa API retrieves the best content on the web using embeddings-based search. Exa understands meaning, giving results search engines can’t. Exa uses a novel link prediction transformer to predict links which match the meaning of a prompt. For queries that need semantic understanding, search with our SOTA web embeddings model over our custom index. For all other queries, we offer keyword-based search. Stop learning how to web scrape or parse HTML. Get the clean, full text of any page in our index, or intelligent embeddings-ranked highlights related to a query. Select any date range, include or exclude any domain, select a custom data vertical, or get up to 10 million results..
    Starting Price: $100 per month
  • 32
    Codestral Embed
    Codestral Embed is Mistral AI's first embedding model, specialized for code, optimized for high-performance code retrieval and semantic understanding. It significantly outperforms leading code embedders in the market today, such as Voyage Code 3, Cohere Embed v4.0, and OpenAI’s large embedding model. Codestral Embed can output embeddings with different dimensions and precisions; for instance, with a dimension of 256 and int8 precision, it still performs better than any model from competitors. The dimensions of the embeddings are ordered by relevance, allowing users to choose the first n dimensions for a smooth trade-off between quality and cost. It excels in retrieval use cases on real-world code data, particularly in benchmarks like SWE-Bench, which is based on real-world GitHub issues and corresponding fixes, and Text2Code (GitHub), relevant for providing context for code completion or editing.
  • 33
    voyage-4-large
    The Voyage 4 model family from Voyage AI is a new generation of text embedding models designed to produce high-quality semantic vectors with an industry-first shared embedding space that lets different models in the series generate compatible embeddings so developers can mix and match models for document and query embedding to optimize accuracy, latency, and cost trade-offs. It includes voyage-4-large (a flagship model using a mixture-of-experts architecture delivering state-of-the-art retrieval accuracy at about 40% lower serving cost than comparable dense models), voyage-4 (balancing quality and efficiency), voyage-4-lite (high-quality embeddings with fewer parameters and lower compute cost), and the open-weight voyage-4-nano (ideal for local development and prototyping with an Apache 2.0 license). All four models in the series operate in a single shared embedding space, so embeddings generated by different variants are interchangeable, enabling asymmetric retrieval strategies.
  • 34
    Jina Search
    With Jina Search, you can search for anything in seconds - faster and more accurately than any traditional search engine. Our AI search captures all the information stored in images and text, providing you with the most comprehensive results. Unlock the power of search and revolutionize the way you find what you're looking for with Jina Search. In this example, not all items on the dataset had the correct label, making it impossible for Classical Search to retrieve relevant results. Since Jina Search doesn't rely on tags, was successful on finding better items. Take full advantage of using state-of-the-art ML models that are optimized to work with multiple modalities of data, such as images and text while maintaining all your Elasticsearch customization. This means you don’t need to annotate each image in your dataset with labels, Jina Search will automatically understand the image and store it accordingly.
  • 35
    Ragie

    Ragie

    Ragie

    Ragie streamlines data ingestion, chunking, and multimodal indexing of structured and unstructured data. Connect directly to your own data sources, ensuring your data pipeline is always up-to-date. Built-in advanced features like LLM re-ranking, summary index, entity extraction, flexible filtering, and hybrid semantic and keyword search help you deliver state-of-the-art generative AI. Connect directly to popular data sources like Google Drive, Notion, Confluence, and more. Automatic syncing keeps your data up-to-date, ensuring your application delivers accurate and reliable information. With Ragie connectors, getting your data into your AI application has never been simpler. With just a few clicks, you can access your data where it already lives. Automatic syncing keeps your data up-to-date ensuring your application delivers accurate and reliable information. The first step in a RAG pipeline is to ingest the relevant data. Use Ragie’s simple APIs to upload files directly.
    Starting Price: $500 per month
  • 36
    BK Software

    BK Software

    Intrinsic ID

    The accelerating expansion of the Internet of Things brings with it a comparably expanding threat model. The growing number of endpoints require strong identities as the foundation of trust to establish and scale robust security. BK is a secure root key generation and management software solution for IoT security that allows device manufacturers to secure their products with an internally generated, unique identity without the need for adding a costly, security-dedicated silicon. Since BK is a software implementation of SRAM PUF, it is the only hardware entropy source option for securing IoT products that does not need to be loaded at silicon fabrication. It can be installed later in the supply chain, and even remotely retrofitted on deployed devices. This enables a never-before-possible remote “brownfield” installment of a hardware root of trust and paves the way for scaling the IoT to billions of devices.
  • 37
    E5 Text Embeddings
    E5 Text Embeddings, developed by Microsoft, are advanced models designed to convert textual data into meaningful vector representations, enhancing tasks like semantic search and information retrieval. These models are trained using weakly-supervised contrastive learning on a vast dataset of over one billion text pairs, enabling them to capture intricate semantic relationships across multiple languages. The E5 family includes models of varying sizes—small, base, and large—offering a balance between computational efficiency and embedding quality. Additionally, multilingual versions of these models have been fine-tuned to support diverse languages, ensuring broad applicability in global contexts. Comprehensive evaluations demonstrate that E5 models achieve performance on par with state-of-the-art, English-only models of similar sizes.
  • 38
    Evo Designer

    Evo Designer

    Arc Institute

    Evo Designer is an advanced tool developed by the Arc Institute, leveraging the capabilities of the Evo 2 genomic foundation model to facilitate DNA sequence generation and analysis. This platform enables users to input nucleotide sequences or specify organisms, prompting the model to generate corresponding DNA sequences. It provides comprehensive annotations of coding regions and, for prokaryotic sequences, offers 3D protein visualizations utilizing ESMFold. Additionally, Evo Designer evaluates sequences by scoring their perplexity and per-nucleotide entropy, assisting researchers in assessing sequence complexity and variability. The underlying Evo 2 model is trained on over 9 trillion nucleotides from a diverse array of prokaryotic and eukaryotic genomes, employing a deep learning architecture that models biological sequences at single-nucleotide resolution with a context window extending up to 1 million tokens.
  • 39
    RansomStop

    RansomStop

    RansomStop

    RansomStop is an AI-based ransomware detection and response tool designed to stop active ransomware encryption before it spreads and disrupts business operations by detecting malicious file encryption activity and responding automatically in seconds. It focuses on real-time containment and protection of critical infrastructure, such as web servers, application servers, SQL servers, domain controllers, NAS appliances, hypervisors, and cloud storage, by analyzing file entropy, access patterns, and metadata to recognize unauthorized encryption rather than relying on process intent or signatures, making it resilient even against evasive or “living-off-the-land” attacks. Once ransomware activity is detected, RansomStop can automatically disable compromised accounts, terminate malicious processes, and block attacker IPs, helping prevent widespread damage and operational downtime without waiting for manual intervention.
  • 40
    GloVe

    GloVe

    Stanford NLP

    GloVe (Global Vectors for Word Representation) is an unsupervised learning algorithm developed by the Stanford NLP Group to obtain vector representations for words. It constructs word embeddings by analyzing global word-word co-occurrence statistics from a given corpus, resulting in vector spaces where the geometric relationships reflect semantic similarities and differences among words. A notable feature of GloVe is its ability to capture linear substructures within the word vector space, enabling vector arithmetic to express relationships. The model is trained on the non-zero entries of a global word-word co-occurrence matrix, which records how frequently pairs of words appear together in a corpus. This approach efficiently leverages statistical information by focusing on significant co-occurrences, leading to meaningful word representations. Pre-trained word vectors are available for various corpora, including Wikipedia 2014.
  • 41
    Softagram

    Softagram

    Softagram

    Software projects tend to be complex and there is the law of entropy making it more complex all the time. The developers easily get lost in the dependency network and tend to create designs that does not stand time well. Softagram provides automatically illustrations on how the dependencies are changing. Automated integration works so that pull requsts (in GitHub, Bitbucket, Azure DevOps), merge requests (in GitLab) and patch sets (in Gerrit) are decorated with a dependency analysis report that pops up as a comment in the tool you already use. The analysis also covers other aspects such as open source licenses and quality. It can be tailored for your needs. Software audits can also be efficiently performed by using Softagram analysis together with Softagram Desktop app designed for advanced software understanding and auditing usage.
    Starting Price: $25 per month per user
  • 42
    Embedditor

    Embedditor

    Embedditor

    Improve your embedding metadata and embedding tokens with a user-friendly UI. Seamlessly apply advanced NLP cleansing techniques like TF-IDF, normalize, and enrich your embedding tokens, improving efficiency and accuracy in your LLM-related applications. Optimize the relevance of the content you get back from a vector database, intelligently splitting or merging the content based on its structure and adding void or hidden tokens, making chunks even more semantically coherent. Get full control over your data, effortlessly deploying Embedditor locally on your PC or in your dedicated enterprise cloud or on-premises environment. Applying Embedditor advanced cleansing techniques to filter out embedding irrelevant tokens like stop-words, punctuations, and low-relevant frequent words, you can save up to 40% on the cost of embedding and vector storage while getting better search results.
  • 43
    Zevi

    Zevi

    Zevi

    Zevi is a site search engine that leverages natural language processing (NLP) and machine learning (ML) to better understand the search intent of users. Instead of relying on keywords to produce the most relevant search results, Zevi relies on its ML models, which have been trained on vast amounts of multilingual data. As a result, Zevi can deliver extremely relevant results regardless of the search query used, thus providing users with an intuitive search experience that minimizes their cognitive load. In addition, Zevi allows website owners to provide personalized results, promote particular search results based on various criteria, and to use search data to make informed business decisions.
    Starting Price: $29 per month
  • 44
    voyage-3-large
    Voyage AI has unveiled voyage-3-large, a cutting-edge general-purpose and multilingual embedding model that leads across eight evaluated domains, including law, finance, and code, outperforming OpenAI-v3-large and Cohere-v3-English by averages of 9.74% and 20.71%, respectively. Enabled by Matryoshka learning and quantization-aware training, it supports embeddings of 2048, 1024, 512, and 256 dimensions, along with multiple quantization options such as 32-bit floating point, signed and unsigned 8-bit integer, and binary precision, significantly reducing vector database costs with minimal impact on retrieval quality. Notably, voyage-3-large offers a 32K-token context length, surpassing OpenAI's 8K and Cohere's 512 tokens. Evaluations across 100 datasets in diverse domains demonstrate its superior performance, with flexible precision and dimensionality options enabling substantial storage savings without compromising quality.
  • 45
    Vald

    Vald

    Vald

    Vald is a highly scalable distributed fast approximate nearest neighbor dense vector search engine. Vald is designed and implemented based on the Cloud-Native architecture. It uses the fastest ANN Algorithm NGT to search neighbors. Vald has automatic vector indexing and index backup, and horizontal scaling which made for searching from billions of feature vector data. Vald is easy to use, feature-rich and highly customizable as you needed. Usually the graph requires locking during indexing, which cause stop-the-world. But Vald uses distributed index graph so it continues to work during indexing. Vald implements its own highly customizable Ingress/Egress filter. Which can be configured to fit the gRPC interface. Horizontal scalable on memory and cpu for your demand. Vald supports to auto backup feature using Object Storage or Persistent Volume which enables disaster recovery.
  • 46
    Meii AI

    Meii AI

    Meii AI

    Meii AI is a global leader in AI solutions, offering industry-trained Large Language Models that can be tuned accordingly with company-specific data and hosted privately or in your cloud. Our RAG ( Retrieval Augmented Generation ) based AI approach uses Embedded Model and Retrieval context ( Semantic Search ) while processing a conversational query to curate Insightful response that is specific for an Enterprise. Blended with our unique skills and decade long experience we had gained in Data Analytics solutions, we combine LLMs and ML Algorithms that offer great solutions for Mid level Enterprises. We are engineering a future that allows people, businesses, and governments to seamlessly leverage technology. With a vision to make AI accessible for everyone on the planet, our team is constantly breaking the barriers between machines and humans.
  • 47
    Jarvis Lyrics
    Jarvis is a lyric writing assistant powered by advanced Artificial Intelligence technology. It generates fresh, new ideas based on given criteria, artist, genre, topic, mood, title, year, and song part. Jarvis is also able to generate a continuation of any given lyrics, like a co-writer. You can use the generated material as a basis or to enrich your own song lyrics. Our AI lyrics generator helps you come up with an unlimited corpus of original ideas. Challenge your comfort zone, and infuse entropy into your creativity with our innovative songwriting AI companion. No matter your musical style, Jarvis adapts to your genre, providing relevant and diverse lyric lines for your compositions. Explore lyric ideas in over 40 languages, opening doors to global inspiration.
    Starting Price: $2.99 per month
  • 48
    EmbeddingGemma
    EmbeddingGemma is a 308-million-parameter multilingual text embedding model, lightweight yet powerful, optimized to run entirely on everyday devices such as phones, laptops, and tablets, enabling fast, offline embedding generation that protects user privacy. Built on the Gemma 3 architecture, it supports over 100 languages, processes up to 2,000 input tokens, and leverages Matryoshka Representation Learning (MRL) to offer flexible embedding dimensions (768, 512, 256, or 128) for tailored speed, storage, and precision. Its GPU-and EdgeTPU-accelerated inference delivers embeddings in milliseconds, under 15 ms for 256 tokens on EdgeTPU, while quantization-aware training keeps memory usage under 200 MB without compromising quality. This makes it ideal for real-time, on-device tasks such as semantic search, retrieval-augmented generation (RAG), classification, clustering, and similarity detection, whether for personal file search, mobile chatbots, or custom domain use.
  • 49
    Steganos Data Safe
    Steganos Data Safe is a secure, future-oriented digital vault that lets users create encrypted safes in minutes and store all kinds of sensitive files with strong, state-of-the-art 256-bit AES-GCM encryption accelerated via AES-NI. Safes automatically scale in size without wasting space, can be synchronized with cloud services (auto-detecting Dropbox, Microsoft OneDrive, Google Drive, and any other cloud), and support shared network safes that allow simultaneous write access by multiple users. Integration exposes opened safes as drives usable from any program, including on ARM devices, and portable safes can be created on USB sticks or optical media, so data remains protected even if the carrier is lost. Security is bolstered with TOTP two-factor authentication using standard apps (Authy, Microsoft Authenticator, Google Authenticator), a live password quality and entropy indicator.
    Starting Price: $29.95 per month
  • 50
    deepset

    deepset

    deepset

    Build a natural language interface for your data. NLP is at the core of modern enterprise data processing. We provide developers with the right tools to build production-ready NLP systems quickly and efficiently. Our open-source framework for scalable, API-driven NLP application architectures. We believe in sharing. Our software is open source. We value our community, and we make modern NLP easily accessible, practical, and scalable. Natural language processing (NLP) is a branch of AI that enables machines to process and interpret human language. In general, by implementing NLP, companies can leverage human language to interact with computers and data. Areas of NLP include semantic search, question answering (QA), conversational AI (chatbots), semantic search, text summarization, question generation, text generation, machine translation, text mining, speech recognition, to name a few use cases.