Alternatives to XLNet
Compare XLNet alternatives for your business or organization using the curated list below. SourceForge ranks the best alternatives to XLNet in 2024. Compare features, ratings, user reviews, pricing, and more from XLNet competitors and alternatives in order to make an informed decision for your business.
-
1
Megatron-Turing
NVIDIA
Megatron-Turing Natural Language Generation model (MT-NLG), is the largest and the most powerful monolithic transformer English language model with 530 billion parameters. This 105-layer, transformer-based MT-NLG improves upon the prior state-of-the-art models in zero-, one-, and few-shot settings. It demonstrates unmatched accuracy in a broad set of natural language tasks such as, Completion prediction, Reading comprehension, Commonsense reasoning, Natural language inferences, Word sense disambiguation, etc. With the intent of accelerating research on the largest English language model till date and enabling customers to experiment, employ and apply such a large language model on downstream language tasks - NVIDIA is pleased to announce an Early Access program for its managed API service to MT-NLG mode. -
2
BERT
Google
BERT is a large language model and a method of pre-training language representations. Pre-training refers to how BERT is first trained on a large source of text, such as Wikipedia. You can then apply the training results to other Natural Language Processing (NLP) tasks, such as question answering and sentiment analysis. With BERT and AI Platform Training, you can train a variety of NLP models in about 30 minutes.Starting Price: Free -
3
GPT-4
OpenAI
GPT-4 (Generative Pre-trained Transformer 4) is a large-scale unsupervised language model, yet to be released by OpenAI. GPT-4 is the successor to GPT-3 and part of the GPT-n series of natural language processing models, and was trained on a dataset of 45TB of text to produce human-like text generation and understanding capabilities. Unlike most other NLP models, GPT-4 does not require additional training data for specific tasks. Instead, it can generate text or answer questions using only its own internally generated context as input. GPT-4 has been shown to be able to perform a wide variety of tasks without any task specific training data such as translation, summarization, question answering, sentiment analysis and more.Starting Price: $0.0200 per 1000 tokens -
4
Cohere
Cohere AI
Build natural language understanding and generation into your product with a few lines of code. The Cohere API provides access to models that read billions of web pages and learn to understand the meaning, sentiment, and intent of the words we use. Use the Cohere API to write human-like text by completing a prompt or filling in blanks. You can write copy, generate code, summarize text, and more. Compute the likelihood of text and retrieve representations from the model. Use the likelihood API to filter text based on chosen categories or selected criteria. With representations, you can train your own downstream models on a wide variety of domain-specific natural language tasks. The Cohere API can compute the similarity between pieces of text, and make categorical predictions by comparing the likelihood of different text options. The model has multiple lenses through which to view ideas, so that it can recognize abstract similarities between concepts as distinct as DNA and computers.Starting Price: $0.40 / 1M Tokens -
5
PaLM 2
Google
PaLM 2 is our next generation large language model that builds on Google’s legacy of breakthrough research in machine learning and responsible AI. It excels at advanced reasoning tasks, including code and math, classification and question answering, translation and multilingual proficiency, and natural language generation better than our previous state-of-the-art LLMs, including PaLM. It can accomplish these tasks because of the way it was built – bringing together compute-optimal scaling, an improved dataset mixture, and model architecture improvements. PaLM 2 is grounded in Google’s approach to building and deploying AI responsibly. It was evaluated rigorously for its potential harms and biases, capabilities and downstream uses in research and in-product applications. It’s being used in other state-of-the-art models, like Med-PaLM 2 and Sec-PaLM, and is powering generative AI features and tools at Google, like Bard and the PaLM API. -
6
Chinchilla
Google DeepMind
Chinchilla is a large language model. Chinchilla uses the same compute budget as Gopher but with 70B parameters and 4× more more data. Chinchilla uniformly and significantly outperforms Gopher (280B), GPT-3 (175B), Jurassic-1 (178B), and Megatron-Turing NLG (530B) on a large range of downstream evaluation tasks. This also means that Chinchilla uses substantially less compute for fine-tuning and inference, greatly facilitating downstream usage. As a highlight, Chinchilla reaches a state-of-the-art average accuracy of 67.5% on the MMLU benchmark, greater than a 7% improvement over Gopher. -
7
RoBERTa
Meta
RoBERTa builds on BERT’s language masking strategy, wherein the system learns to predict intentionally hidden sections of text within otherwise unannotated language examples. RoBERTa, which was implemented in PyTorch, modifies key hyperparameters in BERT, including removing BERT’s next-sentence pretraining objective, and training with much larger mini-batches and learning rates. This allows RoBERTa to improve on the masked language modeling objective compared with BERT and leads to better downstream task performance. We also explore training RoBERTa on an order of magnitude more data than BERT, for a longer amount of time. We used existing unannotated NLP datasets as well as CC-News, a novel set drawn from public news articles.Starting Price: Free -
8
InstructGPT
OpenAI
InstructGPT is an open-source framework for training language models to generate natural language instructions from visual input. It uses a generative pre-trained transformer (GPT) model and the state-of-the-art object detector, Mask R-CNN, to detect objects in images and generate natural language sentences that describe the image. InstructGPT is designed to be effective across domains such as robotics, gaming and education; it can assist robots in navigating complex tasks with natural language instructions, or help students learn by providing descriptive explanations of processes or events.Starting Price: $0.0200 per 1000 tokens -
9
LongLLaMA
LongLLaMA
This repository contains the research preview of LongLLaMA, a large language model capable of handling long contexts of 256k tokens or even more. LongLLaMA is built upon the foundation of OpenLLaMA and fine-tuned using the Focused Transformer (FoT) method. LongLLaMA code is built upon the foundation of Code Llama. We release a smaller 3B base variant (not instruction tuned) of the LongLLaMA model on a permissive license (Apache 2.0) and inference code supporting longer contexts on hugging face. Our model weights can serve as the drop-in replacement of LLaMA in existing implementations (for short context up to 2048 tokens). Additionally, we provide evaluation results and comparisons against the original OpenLLaMA models.Starting Price: Free -
10
Qwen2-VL
Alibaba
Qwen2-VL is the latest version of the vision language models based on Qwen2 in the Qwen model familities. Compared with Qwen-VL, Qwen2-VL has the capabilities of: SoTA understanding of images of various resolution & ratio: Qwen2-VL achieves state-of-the-art performance on visual understanding benchmarks, including MathVista, DocVQA, RealWorldQA, MTVQA, etc. Understanding videos of 20 min+: Qwen2-VL can understand videos over 20 minutes for high-quality video-based question answering, dialog, content creation, etc. Agent that can operate your mobiles, robots, etc.: with the abilities of complex reasoning and decision making, Qwen2-VL can be integrated with devices like mobile phones, robots, etc., for automatic operation based on visual environment and text instructions. Multilingual Support: to serve global users, besides English and Chinese, Qwen2-VL now supports the understanding of texts in different languages inside imagesStarting Price: Free -
11
PanGu-Σ
Huawei
Significant advancements in the field of natural language processing, understanding, and generation have been achieved through the expansion of large language models. This study introduces a system which utilizes Ascend 910 AI processors and the MindSpore framework to train a language model with over a trillion parameters, specifically 1.085T, named PanGu-{\Sigma}. This model, which builds upon the foundation laid by PanGu-{\alpha}, takes the traditionally dense Transformer model and transforms it into a sparse one using a concept known as Random Routed Experts (RRE). The model was efficiently trained on a dataset of 329 billion tokens using a technique called Expert Computation and Storage Separation (ECSS), leading to a 6.3-fold increase in training throughput via heterogeneous computing. Experimentation indicates that PanGu-{\Sigma} sets a new standard in zero-shot learning for various downstream Chinese NLP tasks. -
12
ERNIE 3.0 Titan
Baidu
Pre-trained language models have achieved state-of-the-art results in various Natural Language Processing (NLP) tasks. GPT-3 has shown that scaling up pre-trained language models can further exploit their enormous potential. A unified framework named ERNIE 3.0 was recently proposed for pre-training large-scale knowledge enhanced models and trained a model with 10 billion parameters. ERNIE 3.0 outperformed the state-of-the-art models on various NLP tasks. In order to explore the performance of scaling up ERNIE 3.0, we train a hundred-billion-parameter model called ERNIE 3.0 Titan with up to 260 billion parameters on the PaddlePaddle platform. Furthermore, We design a self-supervised adversarial loss and a controllable language modeling loss to make ERNIE 3.0 Titan generate credible and controllable texts. -
13
Code Llama
Meta
Code Llama is a large language model (LLM) that can use text prompts to generate code. Code Llama is state-of-the-art for publicly available LLMs on code tasks, and has the potential to make workflows faster and more efficient for current developers and lower the barrier to entry for people who are learning to code. Code Llama has the potential to be used as a productivity and educational tool to help programmers write more robust, well-documented software. Code Llama is a state-of-the-art LLM capable of generating code, and natural language about code, from both code and natural language prompts. Code Llama is free for research and commercial use. Code Llama is built on top of Llama 2 and is available in three models: Code Llama, the foundational code model; Codel Llama - Python specialized for Python; and Code Llama - Instruct, which is fine-tuned for understanding natural language instructions.Starting Price: Free -
14
ChatGPT
OpenAI
ChatGPT is a language model developed by OpenAI. It has been trained on a diverse range of internet text, allowing it to generate human-like responses to a variety of prompts. ChatGPT can be used for various natural language processing tasks, such as question answering, conversation, and text generation. ChatGPT is a pre-trained language model that uses deep learning algorithms to generate text. It was trained on a large corpus of text data, allowing it to generate human-like responses to a wide range of prompts. The model has a transformer architecture, which has been shown to be effective in many NLP tasks. In addition to generating text, ChatGPT can also be fine-tuned for specific NLP tasks such as question answering, text classification, and language translation. This allows developers to build powerful NLP applications that can perform specific tasks more accurately. ChatGPT can also process and generate code.Starting Price: Free -
15
VideoPoet
Google
VideoPoet is a simple modeling method that can convert any autoregressive language model or large language model (LLM) into a high-quality video generator. It contains a few simple components. An autoregressive language model learns across video, image, audio, and text modalities to autoregressively predict the next video or audio token in the sequence. A mixture of multimodal generative learning objectives are introduced into the LLM training framework, including text-to-video, text-to-image, image-to-video, video frame continuation, video inpainting and outpainting, video stylization, and video-to-audio. Furthermore, such tasks can be composed together for additional zero-shot capabilities. This simple recipe shows that language models can synthesize and edit videos with a high degree of temporal consistency. -
16
T5
Google
With T5, we propose reframing all NLP tasks into a unified text-to-text-format where the input and output are always text strings, in contrast to BERT-style models that can only output either a class label or a span of the input. Our text-to-text framework allows us to use the same model, loss function, and hyperparameters on any NLP task, including machine translation, document summarization, question answering, and classification tasks (e.g., sentiment analysis). We can even apply T5 to regression tasks by training it to predict the string representation of a number instead of the number itself. -
17
Gemma 2
Google
A family of state-of-the-art, light-open models created from the same research and technology that were used to create Gemini models. These models incorporate comprehensive security measures and help ensure responsible and reliable AI solutions through selected data sets and rigorous adjustments. Gemma models achieve exceptional comparative results in their 2B, 7B, 9B, and 27B sizes, even outperforming some larger open models. With Keras 3.0, enjoy seamless compatibility with JAX, TensorFlow, and PyTorch, allowing you to effortlessly choose and change frameworks based on task. Redesigned to deliver outstanding performance and unmatched efficiency, Gemma 2 is optimized for incredibly fast inference on various hardware. The Gemma family of models offers different models that are optimized for specific use cases and adapt to your needs. Gemma models are large text-to-text lightweight language models with a decoder, trained in a huge set of text data, code, and mathematical content. -
18
CodeGemma
Google
CodeGemma is a collection of powerful, lightweight models that can perform a variety of coding tasks like fill-in-the-middle code completion, code generation, natural language understanding, mathematical reasoning, and instruction following. CodeGemma has 3 model variants, a 7B pre-trained variant that specializes in code completion and generation from code prefixes and/or suffixes, a 7B instruction-tuned variant for natural language-to-code chat and instruction following; and a state-of-the-art 2B pre-trained variant that provides up to 2x faster code completion. Complete lines, and functions, and even generate entire blocks of code, whether you're working locally or using Google Cloud resources. Trained on 500 billion tokens of primarily English language data from web documents, mathematics, and code, CodeGemma models generate code that's not only more syntactically correct but also semantically meaningful, reducing errors and debugging time. -
19
DataGemma
Google
DataGemma represents a pioneering effort by Google to enhance the accuracy and reliability of large language models (LLMs) when dealing with statistical and numerical data. Launched as a set of open models, DataGemma leverages Google's Data Commons, a vast repository of public statistical data—to ground its responses in real-world facts. This initiative employs two innovative approaches: Retrieval Interleaved Generation (RIG) and Retrieval Augmented Generation (RAG). The RIG method integrates real-time data checks during the generation process to ensure factual accuracy, while RAG retrieves relevant information before generating responses, thereby reducing the likelihood of AI hallucinations. By doing so, DataGemma aims to provide users with more trustworthy and factually grounded answers, marking a significant step towards mitigating the issue of misinformation in AI-generated content. -
20
Codestral Mamba
Mistral AI
As a tribute to Cleopatra, whose glorious destiny ended in tragic snake circumstances, we are proud to release Codestral Mamba, a Mamba2 language model specialized in code generation, available under an Apache 2.0 license. Codestral Mamba is another step in our effort to study and provide new architectures. It is available for free use, modification, and distribution, and we hope it will open new perspectives in architecture research. Mamba models offer the advantage of linear time inference and the theoretical ability to model sequences of infinite length. It allows users to engage with the model extensively with quick responses, irrespective of the input length. This efficiency is especially relevant for code productivity use cases, this is why we trained this model with advanced code and reasoning capabilities, enabling it to perform on par with SOTA transformer-based models. -
21
Gemini Ultra
Google
Gemini Ultra is a powerful new language model from Google DeepMind. It is the largest and most capable model in the Gemini family, which also includes Gemini Pro and Gemini Nano. Gemini Ultra is designed for highly complex tasks, such as natural language processing, machine translation, and code generation. It is also the first language model to outperform human experts on the Massive Multitask Language Understanding (MMLU) test, obtaining a score of 90%. -
22
GPT-J
EleutherAI
GPT-J is a cutting-edge language model created by the research organization EleutherAI. In terms of performance, GPT-J exhibits a level of proficiency comparable to that of OpenAI's renowned GPT-3 model in a range of zero-shot tasks. Notably, GPT-J has demonstrated the ability to surpass GPT-3 in tasks related to generating code. The latest iteration of this language model, known as GPT-J-6B, is built upon a linguistic dataset referred to as The Pile. This dataset, which is publicly available, encompasses a substantial volume of 825 gibibytes of language data, organized into 22 distinct subsets. While GPT-J shares certain capabilities with ChatGPT, it is important to note that GPT-J is not designed to operate as a chatbot; rather, its primary function is to predict text. In a significant development in March 2023, Databricks introduced Dolly, a model that follows instructions and is licensed under Apache.Starting Price: Free -
23
ALBERT
Google
ALBERT is a self-supervised Transformer model that was pretrained on a large corpus of English data. This means it does not require manual labelling, and instead uses an automated process to generate inputs and labels from raw texts. It is trained with two distinct objectives in mind. The first is Masked Language Modeling (MLM), which randomly masks 15% of words in the input sentence and requires the model to predict them. This technique differs from RNNs and autoregressive models like GPT as it allows the model to learn bidirectional sentence representations. The second objective is Sentence Ordering Prediction (SOP), which entails predicting the ordering of two consecutive segments of text during pretraining. -
24
GPT-4V (Vision)
OpenAI
GPT-4 with vision (GPT-4V) enables users to instruct GPT-4 to analyze image inputs provided by the user, and is the latest capability we are making broadly available. Incorporating additional modalities (such as image inputs) into large language models (LLMs) is viewed by some as a key frontier in artificial intelligence research and development. Multimodal LLMs offer the possibility of expanding the impact of language-only systems with novel interfaces and capabilities, enabling them to solve new tasks and provide novel experiences for their users. In this system card, we analyze the safety properties of GPT-4V. Our work on safety for GPT-4V builds on the work done for GPT-4 and here we dive deeper into the evaluations, preparation, and mitigation work done specifically for image inputs. -
25
Phi-2
Microsoft
We are now releasing Phi-2, a 2.7 billion-parameter language model that demonstrates outstanding reasoning and language understanding capabilities, showcasing state-of-the-art performance among base language models with less than 13 billion parameters. On complex benchmarks Phi-2 matches or outperforms models up to 25x larger, thanks to new innovations in model scaling and training data curation. With its compact size, Phi-2 is an ideal playground for researchers, including for exploration around mechanistic interpretability, safety improvements, or fine-tuning experimentation on a variety of tasks. We have made Phi-2 available in the Azure AI Studio model catalog to foster research and development on language models. -
26
CodeQwen
QwenLM
CodeQwen is the code version of Qwen, the large language model series developed by the Qwen team, Alibaba Cloud. It is a transformer-based decoder-only language model pre-trained on a large amount of data of codes. Strong code generation capabilities and competitive performance across a series of benchmarks. Supporting long context understanding and generation with the context length of 64K tokens. CodeQwen supports 92 coding languages and provides excellent performance in text-to-SQL, bug fixes, etc. You can just write several lines of code with transformers to chat with CodeQwen. Essentially, we build the tokenizer and the model from pre-trained methods, and we use the generate method to perform chatting with the help of the chat template provided by the tokenizer. We apply the ChatML template for chat models following our previous practice. The model completes the code snippets according to the given prompts, without any additional formatting.Starting Price: Free -
27
Claude 3 Opus
Anthropic
Opus, our most intelligent model, outperforms its peers on most of the common evaluation benchmarks for AI systems, including undergraduate level expert knowledge (MMLU), graduate level expert reasoning (GPQA), basic mathematics (GSM8K), and more. It exhibits near-human levels of comprehension and fluency on complex tasks, leading the frontier of general intelligence. All Claude 3 models show increased capabilities in analysis and forecasting, nuanced content creation, code generation, and conversing in non-English languages like Spanish, Japanese, and French.Starting Price: Free -
28
NLP Cloud
NLP Cloud
Fast and accurate AI models suited for production. Highly-available inference API leveraging the most advanced NVIDIA GPUs. We selected the best open-source natural language processing (NLP) models from the community and deployed them for you. Fine-tune your own models - including GPT-J - or upload your in-house custom models, and deploy them easily to production. Upload or Train/Fine-Tune your own AI models - including GPT-J - from your dashboard, and use them straight away in production without worrying about deployment considerations like RAM usage, high-availability, scalability... You can upload and deploy as many models as you want to production.Starting Price: $29 per month -
29
AI21 Studio
AI21 Studio
AI21 Studio provides API access to Jurassic-1 large-language-models. Our models power text generation and comprehension features in thousands of live applications. Take on any language task. Our Jurassic-1 models are trained to follow natural language instructions and require just a few examples to adapt to new tasks. Use our specialized APIs for common tasks like summarization, paraphrasing and more. Access superior results at a lower cost without reinventing the wheel. Need to fine-tune your own custom model? You're just 3 clicks away. Training is fast, affordable and trained models are deployed immediately. Give your users superpowers by embedding an AI co-writer in your app. Drive user engagement and success with features like long-form draft generation, paraphrasing, repurposing and custom auto-complete.Starting Price: $29 per month -
30
GPT-3.5
OpenAI
GPT-3.5 is the next evolution of GPT 3 large language model from OpenAI. GPT-3.5 models can understand and generate natural language. We offer four main models with different levels of power suitable for different tasks. The main GPT-3.5 models are meant to be used with the text completion endpoint. We also offer models that are specifically meant to be used with other endpoints. Davinci is the most capable model family and can perform any task the other models can perform and often with less instruction. For applications requiring a lot of understanding of the content, like summarization for a specific audience and creative content generation, Davinci is going to produce the best results. These increased capabilities require more compute resources, so Davinci costs more per API call and is not as fast as the other models.Starting Price: $0.0200 per 1000 tokens -
31
Qwen
Alibaba
Qwen LLM refers to a family of large language models (LLMs) developed by Alibaba Cloud's Damo Academy. These models are trained on a massive dataset of text and code, allowing them to understand and generate human-like text, translate languages, write different kinds of creative content, and answer your questions in an informative way. Here are some key features of Qwen LLMs: Variety of sizes: The Qwen series ranges from 1.8 billion to 72 billion parameters, offering options for different needs and performance levels. Open source: Some versions of Qwen are open-source, which means their code is publicly available for anyone to use and modify. Multilingual support: Qwen can understand and translate multiple languages, including English, Chinese, and French. Diverse capabilities: Besides generation and translation, Qwen models can be used for tasks like question answering, text summarization, and code generation.Starting Price: Free -
32
Qwen-7B
Alibaba
Qwen-7B is the 7B-parameter version of the large language model series, Qwen (abbr. Tongyi Qianwen), proposed by Alibaba Cloud. Qwen-7B is a Transformer-based large language model, which is pretrained on a large volume of data, including web texts, books, codes, etc. Additionally, based on the pretrained Qwen-7B, we release Qwen-7B-Chat, a large-model-based AI assistant, which is trained with alignment techniques. The features of the Qwen-7B series include: Trained with high-quality pretraining data. We have pretrained Qwen-7B on a self-constructed large-scale high-quality dataset of over 2.2 trillion tokens. The dataset includes plain texts and codes, and it covers a wide range of domains, including general domain data and professional domain data. Strong performance. In comparison with the models of the similar model size, we outperform the competitors on a series of benchmark datasets, which evaluates natural language understanding, mathematics, coding, etc. And more.Starting Price: Free -
33
Samsung Gauss
Samsung
Samsung Gauss is a new AI model developed by Samsung Electronics. It is a large language model (LLM) that has been trained on a massive dataset of text and code. Samsung Gauss is able to generate text, translate languages, write different kinds of creative content, and answer your questions in an informative way. Samsung Gauss is still under development, but it has already learned to perform many kinds of tasks, including: Following instructions and completing requests thoughtfully. Answering your questions in a comprehensive and informative way, even if they are open ended, challenging, or strange. Generating different creative text formats, like poems, code, scripts, musical pieces, email, letters, etc. Here are some examples of what Samsung Gauss can do: Translation: Samsung Gauss can translate text between many different languages, including English, French, German, Spanish, Chinese, Japanese, and Korean. Coding: Samsung Gauss can generate code. -
34
LLaMA
Meta
LLaMA (Large Language Model Meta AI) is a state-of-the-art foundational large language model designed to help researchers advance their work in this subfield of AI. Smaller, more performant models such as LLaMA enable others in the research community who don’t have access to large amounts of infrastructure to study these models, further democratizing access in this important, fast-changing field. Training smaller foundation models like LLaMA is desirable in the large language model space because it requires far less computing power and resources to test new approaches, validate others’ work, and explore new use cases. Foundation models train on a large set of unlabeled data, which makes them ideal for fine-tuning for a variety of tasks. We are making LLaMA available at several sizes (7B, 13B, 33B, and 65B parameters) and also sharing a LLaMA model card that details how we built the model in keeping with our approach to Responsible AI practices. -
35
Command R+
Cohere
Command R+ is Cohere's newest large language model, optimized for conversational interaction and long-context tasks. It aims at being extremely performant, enabling companies to move beyond proof of concept and into production. We recommend using Command R+ for those workflows that lean on complex RAG functionality and multi-step tool use (agents). Command R, on the other hand, is great for simpler retrieval augmented generation (RAG) and single-step tool use tasks, as well as applications where price is a major consideration.Starting Price: Free -
36
Mistral NeMo
Mistral AI
Mistral NeMo, our new best small model. A state-of-the-art 12B model with 128k context length, and released under the Apache 2.0 license. Mistral NeMo is a 12B model built in collaboration with NVIDIA. Mistral NeMo offers a large context window of up to 128k tokens. Its reasoning, world knowledge, and coding accuracy are state-of-the-art in its size category. As it relies on standard architecture, Mistral NeMo is easy to use and a drop-in replacement in any system using Mistral 7B. We have released pre-trained base and instruction-tuned checkpoints under the Apache 2.0 license to promote adoption for researchers and enterprises. Mistral NeMo was trained with quantization awareness, enabling FP8 inference without any performance loss. The model is designed for global, multilingual applications. It is trained on function calling and has a large context window. Compared to Mistral 7B, it is much better at following precise instructions, reasoning, and handling multi-turn conversations.Starting Price: Free -
37
GPT-3
OpenAI
Our GPT-3 models can understand and generate natural language. We offer four main models with different levels of power suitable for different tasks. Davinci is the most capable model, and Ada is the fastest. The main GPT-3 models are meant to be used with the text completion endpoint. We also offer models that are specifically meant to be used with other endpoints. Davinci is the most capable model family and can perform any task the other models can perform and often with less instruction. For applications requiring a lot of understanding of the content, like summarization for a specific audience and creative content generation, Davinci is going to produce the best results. These increased capabilities require more compute resources, so Davinci costs more per API call and is not as fast as the other models.Starting Price: $0.0200 per 1000 tokens -
38
Medical LLM
John Snow Labs
John Snow Labs' Medical LLM is an advanced, domain-specific large language model (LLM) designed to revolutionize the way healthcare organizations harness the power of artificial intelligence. This innovative platform is tailored specifically for the healthcare industry, combining cutting-edge natural language processing (NLP) capabilities with a deep understanding of medical terminology, clinical workflows, and regulatory requirements. The result is a powerful tool that enables healthcare providers, researchers, and administrators to unlock new insights, improve patient outcomes, and drive operational efficiency. At the heart of the Healthcare LLM is its comprehensive training on vast amounts of healthcare data, including clinical notes, research papers, and regulatory documents. This specialized training allows the model to accurately interpret and generate medical text, making it an invaluable asset for tasks such as clinical documentation, automated coding, and medical research. -
39
Granite Code
IBM
We introduce the Granite series of decoder-only code models for code generative tasks (e.g., fixing bugs, explaining code, documenting code), trained with code written in 116 programming languages. A comprehensive evaluation of the Granite Code model family on diverse tasks demonstrates that our models consistently reach state-of-the-art performance among available open source code LLMs. The key advantages of Granite Code models include: All-rounder Code LLM: Granite Code models achieve competitive or state-of-the-art performance on different kinds of code-related tasks, including code generation, explanation, fixing, editing, translation, and more. Demonstrating their ability to solve diverse coding tasks. Trustworthy Enterprise-Grade LLM: All our models are trained on license-permissible data collected following IBM's AI Ethics principles and guided by IBM’s Corporate Legal team for trustworthy enterprise usage.Starting Price: Free -
40
OpenAI o1
OpenAI
OpenAI o1 represents a new series of AI models designed by OpenAI, focusing on enhanced reasoning capabilities. These models, including o1-preview and o1-mini, are trained using a novel reinforcement learning approach to spend more time "thinking" through problems before providing answers. This approach allows o1 to excel in complex problem-solving tasks in areas like coding, mathematics, and science, outperforming previous models like GPT-4o in certain benchmarks. The o1 series aims to tackle challenges that require deeper thought processes, marking a significant step towards AI systems that can reason more like humans, although it's still in the preview stage with ongoing improvements and evaluations. -
41
Smaug-72B
Abacus
Smaug-72B is a powerful open-source large language model (LLM) known for several key features: High Performance: It currently holds the top spot on the Hugging Face Open LLM leaderboard, surpassing models like GPT-3.5 in various benchmarks. This means it excels at tasks like understanding, responding to, and generating human-like text. Open Source: Unlike many other advanced LLMs, Smaug-72B is freely available for anyone to use and modify, fostering collaboration and innovation in the AI community. Focus on Reasoning and Math: It specifically shines in handling reasoning and mathematical tasks, attributing this strength to unique fine-tuning techniques developed by Abacus AI, the creators of Smaug-72B. Based on Qwen-72B: It's technically a fine-tuned version of another powerful LLM called Qwen-72B, released by Alibaba, further improving upon its capabilities. Overall, Smaug-72B represents a significant step forward in open-source AI.Starting Price: Free -
42
Pixtral 12B
Mistral AI
Pixtral 12B is a pioneering multimodal AI model developed by Mistral AI, designed to process and interpret both text and image data seamlessly. This model marks a significant advancement in the integration of different data types, allowing for more intuitive interactions and enhanced content creation capabilities. With a foundation built upon Mistral's NeMo 12B text model, Pixtral 12B incorporates an additional vision adapter that adds approximately 400 million parameters, expanding its ability to handle visual inputs up to 1024 x 1024 pixels in size. This model supports a variety of applications, from detailed image analysis to answering questions about visual content, showcasing its versatility in real-world applications. Pixtral 12B's architecture not only supports a large context window of 128k tokens but also employs innovative techniques like GeLU activation and 2D RoPE for its vision components, making it a robust tool for developers and enterprises aiming to leverage AI.Starting Price: Free -
43
Reka
Reka
Our enterprise-grade multimodal assistant carefully designed with privacy, security, and efficiency in mind. We train Yasa to read text, images, videos, and tabular data, with more modalities to come. Use it to generate ideas for creative tasks, get answers to basic questions, or derive insights from your internal data. Generate, train, compress, or deploy on-premise with a few simple commands. Use our proprietary algorithms to personalize our model to your data and use cases. We design proprietary algorithms involving retrieval, fine-tuning, self-supervised instruction tuning, and reinforcement learning to tune our model on your datasets. -
44
Claude 3.5 Sonnet
Anthropic
Claude 3.5 Sonnet sets new industry benchmarks for graduate-level reasoning (GPQA), undergraduate-level knowledge (MMLU), and coding proficiency (HumanEval). It shows marked improvement in grasping nuance, humor, and complex instructions, and is exceptional at writing high-quality content with a natural, relatable tone. Claude 3.5 Sonnet operates at twice the speed of Claude 3 Opus. This performance boost, combined with cost-effective pricing, makes Claude 3.5 Sonnet ideal for complex tasks such as context-sensitive customer support and orchestrating multi-step workflows. Claude 3.5 Sonnet is now available for free on Claude.ai and the Claude iOS app, while Claude Pro and Team plan subscribers can access it with significantly higher rate limits. It is also available via the Anthropic API, Amazon Bedrock, and Google Cloud’s Vertex AI. The model costs $3 per million input tokens and $15 per million output tokens, with a 200K token context window.Starting Price: Free -
45
Hippocratic AI
Hippocratic AI
Hippocratic AI is the new state of the art (SOTA) model, outperforming GPT-4 on 105 of 114 healthcare exams and certifications. Hippocratic AI has outperformed GPT-4 on 105 out of 114 tests and certifications, outperformed by a margin of five percent or more on 74 of the certifications, and outperformed by a margin of ten percent or more on 43 of the certifications. Most language models pre-train on the common crawl of the Internet, which may include incorrect and misleading information. Unlike these LLMs, Hippocratic AI is investing heavily in legally acquiring evidence-based healthcare content. We’re conducting a unique Reinforcement Learning with Human Feedback process using healthcare professionals to train and validate the model’s readiness for deployment. We call this RLHF-HP. Hippocratic AI will not release the model until a large number of these licensed professionals deem it safe. -
46
GPT-NeoX
EleutherAI
An implementation of model parallel autoregressive transformers on GPUs, based on the DeepSpeed library. This repository records EleutherAI's library for training large-scale language models on GPUs. Our current framework is based on NVIDIA's Megatron Language Model and has been augmented with techniques from DeepSpeed as well as some novel optimizations. We aim to make this repo a centralized and accessible place to gather techniques for training large-scale autoregressive language models, and accelerate research into large-scale training.Starting Price: Free -
47
Mistral Large 2
Mistral AI
Mistral Large 2 has a 128k context window and supports dozens of languages including French, German, Spanish, Italian, Portuguese, Arabic, Hindi, Russian, Chinese, Japanese, and Korean, along with 80+ coding languages including Python, Java, C, C++, JavaScript, and Bash. Mistral Large 2 is designed for single-node inference with long-context applications in mind – its size of 123 billion parameters allows it to run at large throughput on a single node. We are releasing Mistral Large 2 under the Mistral Research License, that allows usage and modification for research and non-commercial usages.Starting Price: Free -
48
FLAN-T5
Google
FLAN-T5 was released in the paper Scaling Instruction-Finetuned Language Models - it is an enhanced version of T5 that has been finetuned in a mixture of tasks.Starting Price: Free -
49
Alpa
Alpa
Alpa aims to automate large-scale distributed training and serving with just a few lines of code. Alpa was initially developed by folks in the Sky Lab, UC Berkeley. Some advanced techniques used in Alpa have been written in a paper published in OSDI'2022. Alpa community is growing with new contributors from Google. A language model is a probability distribution over sequences of words. It predicts the next word based on all the previous words. It is useful for a variety of AI applications, such the auto-completion in your email or chatbot service. For more information, check out the language model wikipedia page. GPT-3 is very large language model, with 175 billion parameters, that uses deep learning to produce human-like text. Many researchers and news articles described GPT-3 as "one of the most interesting and important AI systems ever produced". GPT-3 is gradually being used as a backbone in the latest NLP research and applications.Starting Price: Free -
50
Aya
Cohere AI
Aya is a new state-of-the-art, open-source, massively multilingual, generative large language research model (LLM) covering 101 different languages — more than double the number of languages covered by existing open-source models. Aya helps researchers unlock the powerful potential of LLMs for dozens of languages and cultures largely ignored by most advanced models on the market today. We are open-sourcing both the Aya model, as well as the largest multilingual instruction fine-tuned dataset to-date with a size of 513 million covering 114 languages. This data collection includes rare annotations from native and fluent speakers all around the world, ensuring that AI technology can effectively serve a broad global audience that have had limited access to-date.