Agenta
Agenta is an open-source LLMOps platform designed to help teams build reliable AI applications with integrated prompt management, evaluation workflows, and system observability. It centralizes all prompts, experiments, traces, and evaluations into one structured hub, eliminating scattered workflows across Slack, spreadsheets, and emails. With Agenta, teams can iterate on prompts collaboratively, compare models side-by-side, and maintain full version history for every change. Its evaluation tools replace guesswork with automated testing, LLM-as-a-judge, human annotation, and intermediate-step analysis. Observability features allow developers to trace failures, annotate logs, convert traces into tests, and monitor performance regressions in real time. Agenta helps AI teams transition from siloed experimentation to a unified, efficient LLMOps workflow for shipping more reliable agents and AI products.
Learn more
Narrow AI
Introducing Narrow AI: Take the Engineer out of Prompt Engineering
Narrow AI autonomously writes, monitors, and optimizes prompts for any model - so you can ship AI features 10x faster at a fraction of the cost.
Maximize quality while minimizing costs
- Reduce AI spend by 95% with cheaper models
- Improve accuracy through Automated Prompt Optimization
- Achieve faster responses with lower latency models
Test new models in minutes, not weeks
- Easily compare prompt performance across LLMs
- Get cost and latency benchmarks for each model
- Deploy on the optimal model for your use case
Ship LLM features 10x faster
- Automatically generate expert-level prompts
- Adapt prompts to new models as they are released
- Optimize prompts for quality, cost and speed
Learn more
Literal AI
Literal AI is a collaborative platform designed to assist engineering and product teams in developing production-grade Large Language Model (LLM) applications. It offers a suite of tools for observability, evaluation, and analytics, enabling efficient tracking, optimization, and integration of prompt versions. Key features include multimodal logging, encompassing vision, audio, and video, prompt management with versioning and AB testing capabilities, and a prompt playground for testing multiple LLM providers and configurations. Literal AI integrates seamlessly with various LLM providers and AI frameworks, such as OpenAI, LangChain, and LlamaIndex, and provides SDKs in Python and TypeScript for easy instrumentation of code. The platform also supports the creation of experiments against datasets, facilitating continuous improvement and preventing regressions in LLM applications.
Learn more
HoneyHive
AI engineering doesn't have to be a black box. Get full visibility with tools for tracing, evaluation, prompt management, and more. HoneyHive is an AI observability and evaluation platform designed to assist teams in building reliable generative AI applications. It offers tools for evaluating, testing, and monitoring AI models, enabling engineers, product managers, and domain experts to collaborate effectively. Measure quality over large test suites to identify improvements and regressions with each iteration. Track usage, feedback, and quality at scale, facilitating the identification of issues and driving continuous improvements. HoneyHive supports integration with various model providers and frameworks, offering flexibility and scalability to meet diverse organizational needs. It is suitable for teams aiming to ensure the quality and performance of their AI agents, providing a unified platform for evaluation, monitoring, and prompt management.
Learn more