Alternatives to Vertex AI

Compare Vertex AI alternatives for your business or organization using the curated list below. SourceForge ranks the best alternatives to Vertex AI in 2026. Compare features, ratings, user reviews, pricing, and more from Vertex AI competitors and alternatives in order to make an informed decision for your business.

  • 1
    Google Cloud BigQuery
    BigQuery is a serverless, multicloud data warehouse that simplifies the process of working with all types of data so you can focus on getting valuable business insights quickly. At the core of Google’s data cloud, BigQuery allows you to simplify data integration, cost effectively and securely scale analytics, share rich data experiences with built-in business intelligence, and train and deploy ML models with a simple SQL interface, helping to make your organization’s operations more data-driven. Gemini in BigQuery offers AI-driven tools for assistance and collaboration, such as code suggestions, visual data preparation, and smart recommendations designed to boost efficiency and reduce costs. BigQuery delivers an integrated platform featuring SQL, a notebook, and a natural language-based canvas interface, catering to data professionals with varying coding expertise. This unified workspace streamlines the entire analytics process.
    Compare vs. Vertex AI View Software
    Visit Website
  • 2
    Google AI Studio
    Google AI Studio is a comprehensive, web-based development environment that democratizes access to Google's cutting-edge AI models, notably the Gemini family, enabling a broad spectrum of users to explore and build innovative applications. This platform facilitates rapid prototyping by providing an intuitive interface for prompt engineering, allowing developers to meticulously craft and refine their interactions with AI. Beyond basic experimentation, AI Studio supports the seamless integration of AI capabilities into diverse projects, from simple chatbots to complex data analysis tools. Users can rigorously test different prompts, observe model behaviors, and iteratively refine their AI-driven solutions within a collaborative and user-friendly environment. This empowers developers to push the boundaries of AI application development, fostering creativity and accelerating the realization of AI-powered solutions.
    Compare vs. Vertex AI View Software
    Visit Website
  • 3
    Ango Hub

    Ango Hub

    iMerit

    Ango Hub is a quality-focused, enterprise-ready data annotation platform for AI teams, available on cloud and on-premise. It supports computer vision, medical imaging, NLP, audio, video, and 3D point cloud annotation, powering use cases from autonomous driving and robotics to healthcare AI. Built for AI fine-tuning, RLHF, LLM evaluation, and human-in-the-loop workflows, Ango Hub boosts throughput with automation, model-assisted pre-labeling, and customizable QA while maintaining accuracy. Features include centralized instructions, review pipelines, issue tracking, and consensus across up to 30 annotators. With nearly twenty labeling tools—such as rotated bounding boxes, label relations, nested conditional questions, and table-based labeling—it supports both simple and complex projects. It also enables annotation pipelines for chain-of-thought reasoning and next-gen LLM training and enterprise-grade security with HIPAA compliance, SOC 2 certification, and role-based access controls.
    Compare vs. Vertex AI View Software
    Visit Website
  • 4
    Google Cloud Vision AI
    Derive insights from your images in the cloud or at the edge with AutoML Vision or use pre-trained Vision API models to detect emotion, understand text, and more. Google Cloud offers two computer vision products that use machine learning to help you understand your images with industry-leading prediction accuracy. Automate the training of your own custom machine learning models. Simply upload images and train custom image models with AutoML Vision’s easy-to-use graphical interface; optimize your models for accuracy, latency, and size; and export them to your application in the cloud, or to an array of devices at the edge. Google Cloud’s Vision API offers powerful pre-trained machine learning models through REST and RPC APIs. Assign labels to images and quickly classify them into millions of predefined categories. Detect objects and faces, read printed and handwritten text, and build valuable metadata into your image catalog.
  • 5
    Dataloop AI

    Dataloop AI

    Dataloop AI

    Manage unstructured data and pipelines to develop AI solutions at amazing speed. Enterprise-grade data platform for vision AI. Dataloop is a one-stop shop for building and deploying powerful computer vision pipelines data labeling, automating data ops, customizing production pipelines and weaving the human-in-the-loop for data validation. Our vision is to make machine learning-based systems accessible, affordable and scalable for all. Explore and analyze vast quantities of unstructured data from diverse sources. Rely on automated preprocessing and embeddings to identify similarities and find the data you need. Curate, version, clean, and route your data to wherever it’s needed to create exceptional AI applications.
  • 6
    Amazon SageMaker
    Amazon SageMaker is an advanced machine learning service that provides an integrated environment for building, training, and deploying machine learning (ML) models. It combines tools for model development, data processing, and AI capabilities in a unified studio, enabling users to collaborate and work faster. SageMaker supports various data sources, such as Amazon S3 data lakes and Amazon Redshift data warehouses, while ensuring enterprise security and governance through its built-in features. The service also offers tools for generative AI applications, making it easier for users to customize and scale AI use cases. SageMaker’s architecture simplifies the AI lifecycle, from data discovery to model deployment, providing a seamless experience for developers.
  • 7
    Labelbox

    Labelbox

    Labelbox

    The training data platform for AI teams. A machine learning model is only as good as its training data. Labelbox is an end-to-end platform to create and manage high-quality training data all in one place, while supporting your production pipeline with powerful APIs. Powerful image labeling tool for image classification, object detection and segmentation. When every pixel matters, you need accurate and intuitive image segmentation tools. Customize the tools to support your specific use case, including instances, custom attributes and much more. Performant video labeling editor for cutting-edge computer vision. Label directly on the video up to 30 FPS with frame level. Additionally, Labelbox provides per frame label feature analytics enabling you to create better models faster. Creating training data for natural language intelligence has never been easier. Label text strings, conversations, paragraphs, and documents with fast & customizable classification.
  • 8
    Vertex

    Vertex

    Vertex Inc.

    Vertex software enables tax determination, compliance, and reporting, tax data management, and document management with powerful pre-built integrations to core business applications. Vertex brings together the tax process acumen, technology innovation, and trusted industry partnerships to create an end-to-end global indirect tax solution, reducing audit exposure and freeing up tax departments to bring more value to their company.
  • 9
    TensorFlow

    TensorFlow

    TensorFlow

    An end-to-end open source machine learning platform. TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries and community resources that lets researchers push the state-of-the-art in ML and developers easily build and deploy ML powered applications. Build and train ML models easily using intuitive high-level APIs like Keras with eager execution, which makes for immediate model iteration and easy debugging. Easily train and deploy models in the cloud, on-prem, in the browser, or on-device no matter what language you use. A simple and flexible architecture to take new ideas from concept to code, to state-of-the-art models, and to publication faster. Build, deploy, and experiment easily with TensorFlow.
  • 10
    Oracle AI Data Platform (AIDP)
    The Oracle AI Data Platform unifies the complete data-to-insight lifecycle with embedded artificial intelligence, machine learning, and generative capabilities across data stores, analytics, applications, and infrastructure. It supports everything from data ingestion and governance through to feature engineering, model training, and operationalization, enabling organizations to build trusted AI-driven systems at scale. With its integrated architecture, the platform offers native support for vector search, retrieval-augmented generation, and large language models, while enabling secure, auditable access to business data and analytics across enterprise roles. The platform’s analytics layer lets users explore, visualize, and interpret data with AI-powered assistance, where self-service dashboards, natural-language queries, and generative summaries accelerate decision making.
  • 11
    Nyckel

    Nyckel

    Nyckel

    Nyckel makes it easy to auto-label images and text using AI. We say ‘easy’ because trying to do classification through complex “we-do-it-all” AI/ML tools is hard. Especially if you’re not a machine learning expert. That’s why Nyckel built a platform that makes image and text classification easy for everyone. In just a few minutes, you can train an AI model to identify attributes of any image or text. Whether you’re sorting through images, moderating text, or needing real-time content labeling, Nyckel lets you build a custom classifier in just 5 minutes. And with our Classification API, you can auto-label at scale. Nyckel’s goal is to make AI-powered classification a practical tool for anyone. Learn more at Nyckel.com.
  • 12
    Tencent Cloud TI Platform
    Tencent Cloud TI Platform is a one-stop machine learning service platform designed for AI engineers. It empowers AI development throughout the entire process from data preprocessing to model building, model training, model evaluation, and model service. Preconfigured with diverse algorithm components, it supports multiple algorithm frameworks to adapt to different AI use cases. Tencent Cloud TI Platform delivers a one-stop machine learning experience that covers a complete and closed-loop workflow from data preprocessing to model building, model training, and model evaluation. With Tencent Cloud TI Platform, even AI beginners can have their models constructed automatically, making it much easier to complete the entire training process. Tencent Cloud TI Platform's auto-tuning tool can also further enhance the efficiency of parameter tuning. Tencent Cloud TI Platform allows CPU/GPU resources to elastically respond to different computing power needs with flexible billing modes.
  • 13
    Amazon Nova Forge
    Amazon Nova Forge is a groundbreaking service that enables organizations to build their own frontier models by leveraging early Nova checkpoints and proprietary data. It provides complete flexibility across the full training lifecycle, including pre-training, mid-training, supervised fine-tuning, and reinforcement learning. With access to Nova-curated datasets and responsible AI tooling, customers can create powerful and safer custom models tailored to their domain. Nova Forge allows teams to mix their own datasets at the peak learning stage to maximize accuracy while preventing catastrophic forgetting. Companies across industries—from Reddit to Sony—use Nova Forge to consolidate ML workflows, accelerate innovation, and outperform specialized models. Hosted securely on AWS, it offers the most cost-effective, streamlined path to building next-generation AI systems.
  • 14
    Azure Machine Learning
    Accelerate the end-to-end machine learning lifecycle. Empower developers and data scientists with a wide range of productive experiences for building, training, and deploying machine learning models faster. Accelerate time to market and foster team collaboration with industry-leading MLOps—DevOps for machine learning. Innovate on a secure, trusted platform, designed for responsible ML. Productivity for all skill levels, with code-first and drag-and-drop designer, and automated machine learning. Robust MLOps capabilities that integrate with existing DevOps processes and help manage the complete ML lifecycle. Responsible ML capabilities – understand models with interpretability and fairness, protect data with differential privacy and confidential computing, and control the ML lifecycle with audit trials and datasheets. Best-in-class support for open-source frameworks and languages including MLflow, Kubeflow, ONNX, PyTorch, TensorFlow, Python, and R.
  • 15
    Amazon Bedrock
    Amazon Bedrock is a fully managed service that simplifies building and scaling generative AI applications by providing access to a variety of high-performing foundation models (FMs) from leading AI companies such as AI21 Labs, Anthropic, Cohere, Meta, Mistral AI, Stability AI, and Amazon itself. Through a single API, developers can experiment with these models, customize them using techniques like fine-tuning and Retrieval Augmented Generation (RAG), and create agents that interact with enterprise systems and data sources. As a serverless platform, Amazon Bedrock eliminates the need for infrastructure management, allowing seamless integration of generative AI capabilities into applications with a focus on security, privacy, and responsible AI practices.
  • 16
    IBM watsonx.ai
    Now available—a next generation enterprise studio for AI builders to train, validate, tune and deploy AI models IBM® watsonx.ai™ AI studio is part of the IBM watsonx™ AI and data platform, bringing together new generative AI (gen AI) capabilities powered by foundation models and traditional machine learning (ML) into a powerful studio spanning the AI lifecycle. Tune and guide models with your enterprise data to meet your needs with easy-to-use tools for building and refining performant prompts. With watsonx.ai, you can build AI applications in a fraction of the time and with a fraction of the data. Watsonx.ai offers: End-to-end AI governance: Enterprises can scale and accelerate the impact of AI with trusted data across the business, using data wherever it resides. Hybrid, multi-cloud deployments: IBM provides the flexibility to integrate and deploy your AI workloads into your hybrid-cloud stack of choice.
  • 17
    Intel Tiber AI Cloud
    Intel® Tiber™ AI Cloud is a powerful platform designed to scale AI workloads with advanced computing resources. It offers specialized AI processors, such as the Intel Gaudi AI Processor and Max Series GPUs, to accelerate model training, inference, and deployment. Optimized for enterprise-level AI use cases, this cloud solution enables developers to build and fine-tune models with support for popular libraries like PyTorch. With flexible deployment options, secure private cloud solutions, and expert support, Intel Tiber™ ensures seamless integration, fast deployment, and enhanced model performance.
  • 18
    Dataplex Universal Catalog
    Dataplex Universal Catalog is Google Cloud’s intelligent governance platform for data and AI artifacts. It centralizes discovery, management, and monitoring across data lakes, warehouses, and databases, giving teams unified access to trusted data. With Vertex AI integration, users can instantly find datasets, models, features, and related assets in one search experience. It supports semantic search, data lineage, quality checks, and profiling to improve trust and compliance. Integrated with BigQuery and BigLake, it enables end-to-end governance for both proprietary and open lakehouse environments. Dataplex Universal Catalog helps organizations democratize data access, enforce governance, and accelerate analytics and AI initiatives.
    Starting Price: $0.060 per hour
  • 19
    Label Studio

    Label Studio

    Label Studio

    The most flexible data annotation tool. Quickly installable. Build custom UIs or use pre-built labeling templates. Configurable layouts and templates adapt to your dataset and workflow. Detect objects on images, boxes, polygons, circular, and key points supported. Partition the image into multiple segments. Use ML models to pre-label and optimize the process. Webhooks, Python SDK, and API allow you to authenticate, create projects, import tasks, manage model predictions, and more. Save time by using predictions to assist your labeling process with ML backend integration. Connect to cloud object storage and label data there directly with S3 and GCP. Prepare and manage your dataset in our Data Manager using advanced filters. Support multiple projects, use cases, and data types in one platform. Start typing in the config, and you can quickly preview the labeling interface. At the bottom of the page, you have live serialization updates of what Label Studio expects as an input.
  • 20
    MLflow

    MLflow

    MLflow

    MLflow is an open source platform to manage the ML lifecycle, including experimentation, reproducibility, deployment, and a central model registry. MLflow currently offers four components. Record and query experiments: code, data, config, and results. Package data science code in a format to reproduce runs on any platform. Deploy machine learning models in diverse serving environments. Store, annotate, discover, and manage models in a central repository. The MLflow Tracking component is an API and UI for logging parameters, code versions, metrics, and output files when running your machine learning code and for later visualizing the results. MLflow Tracking lets you log and query experiments using Python, REST, R API, and Java API APIs. An MLflow Project is a format for packaging data science code in a reusable and reproducible way, based primarily on conventions. In addition, the Projects component includes an API and command-line tools for running projects.
  • 21
    Google Cloud Healthcare API
    The Google Cloud Healthcare API is a fully managed service that enables secure and scalable data exchange between healthcare applications and solutions. It supports industry-standard protocols and formats, including DICOM, FHIR, and HL7v2, allowing for the ingestion, storage, and analysis of healthcare data within the Google Cloud environment. By integrating with advanced analytics and machine learning tools such as BigQuery, AutoML, and Vertex AI, the API empowers healthcare organizations to derive actionable insights and drive innovation in patient care and operational efficiency.
  • 22
    Vertex AI Notebooks
    Vertex AI Notebooks is a fully managed, scalable solution from Google Cloud that accelerates machine learning (ML) development. It provides a seamless, interactive environment for data scientists and developers to explore data, prototype models, and collaborate in real-time. With integration into Google Cloud’s vast data and ML tools, Vertex AI Notebooks supports rapid prototyping, automated workflows, and deployment, making it easier to scale ML operations. The platform’s support for both Colab Enterprise and Vertex AI Workbench ensures a flexible and secure environment for diverse enterprise needs.
    Starting Price: $10 per GB
  • 23
    Labellerr

    Labellerr

    Labellerr

    Labellerr is a data annotation platform designed to expedite the preparation of high-quality labeled datasets for AI and machine learning models. It supports various data types, including images, videos, text, PDFs, and audio, catering to diverse annotation needs. The platform offers automated annotation features, such as model-assisted labeling and active learning, to accelerate the labeling process. Additionally, Labellerr provides advanced analytics and smart quality assurance tools to ensure the accuracy and reliability of annotations. For projects requiring specialized knowledge, Labellerr offers expert-in-the-loop services, including access to professionals in fields like healthcare and automotive.
  • 24
    Vertex AI Vision
    Easily build, deploy, and manage computer vision applications with a fully managed, end-to-end application development environment that reduces the time to build computer vision applications from days to minutes at one-tenth the cost of current offerings. Quickly and conveniently ingest real-time video and image streams at a global scale. Easily build computer vision applications using a drag-and-drop interface. Store and search petabytes of data with built-in AI capabilities. Vertex AI Vision includes all the tools needed to manage the life cycle of computer vision applications, across ingestion, analysis, storage, and deployment. Easily connect application output to a data destination, like BigQuery for analytics, or live streaming to drive real-time business actions. Ingest thousands of video streams from across the globe. With a monthly pricing model, enjoy up to one-tenth lower costs than previous offerings.
    Starting Price: $0.0085 per GB
  • 25
    Amazon SageMaker Ground Truth
    Amazon SageMaker allows you to identify raw data such as images, text files, and videos; add informative labels and generate labeled synthetic data to create high-quality training data sets for your machine learning (ML) models. SageMaker offers two options, Amazon SageMaker Ground Truth Plus and Amazon SageMaker Ground Truth, which give you the flexibility to use an expert workforce to create and manage data labeling workflows on your behalf or manage your own data labeling workflows. data labeling. If you want the flexibility to create and manage your own personal and data labeling workflows, you can use SageMaker Ground Truth. SageMaker Ground Truth is a data labeling service that makes data labeling easy and gives you the option of using human annotators via Amazon Mechanical Turk, third-party providers, or your own private staff.
    Starting Price: $0.08 per month
  • 26
    Weights & Biases

    Weights & Biases

    Weights & Biases

    Experiment tracking, hyperparameter optimization, model and dataset versioning with Weights & Biases (WandB). Track, compare, and visualize ML experiments with 5 lines of code. Add a few lines to your script, and each time you train a new version of your model, you'll see a new experiment stream live to your dashboard. Optimize models with our massively scalable hyperparameter search tool. Sweeps are lightweight, fast to set up, and plug in to your existing infrastructure for running models. Save every detail of your end-to-end machine learning pipeline — data preparation, data versioning, training, and evaluation. It's never been easier to share project updates. Quickly and easily implement experiment logging by adding just a few lines to your script and start logging results. Our lightweight integration works with any Python script. W&B Weave is here to help developers build and iterate on their AI applications with confidence.
  • 27
    Encord

    Encord

    Encord

    Achieve peak model performance with the best data. Create & manage training data for any visual modality, debug models and boost performance, and make foundation models your own. Expert review, QA and QC workflows help you deliver higher quality datasets to your artificial intelligence teams, helping improve model performance. Connect your data and models with Encord's Python SDK and API access to create automated pipelines for continuously training ML models. Improve model accuracy by identifying errors and biases in your data, labels and models.
  • 28
    Hugging Face

    Hugging Face

    Hugging Face

    Hugging Face is a leading platform for AI and machine learning, offering a vast hub for models, datasets, and tools for natural language processing (NLP) and beyond. The platform supports a wide range of applications, from text, image, and audio to 3D data analysis. Hugging Face fosters collaboration among researchers, developers, and companies by providing open-source tools like Transformers, Diffusers, and Tokenizers. It enables users to build, share, and access pre-trained models, accelerating AI development for a variety of industries.
    Starting Price: $9 per month
  • 29
    Appen

    Appen

    Appen

    The Appen platform combines human intelligence from over one million people all over the world with cutting-edge models to create the highest-quality training data for your ML projects. Upload your data to our platform and we provide the annotations, judgments, and labels you need to create accurate ground truth for your models. High-quality data annotation is key for training any AI/ML model successfully. After all, this is how your model learns what judgments it should be making. Our platform combines human intelligence at scale with cutting-edge models to annotate all sorts of raw data, from text, to video, to images, to audio, to create the accurate ground truth needed for your models. Create and launch data annotation jobs easily through our plug and play graphical user interface, or programmatically through our API.
  • 30
    Hive Data
    Create training datasets for computer vision models with our fully managed solution. We believe that data labeling is the most important factor in building effective deep learning models. We are committed to being the field's leading data labeling platform and helping companies take full advantage of AI's capabilities. Organize your media with discrete categories. Identify items of interest with one or many bounding boxes. Like bounding boxes, but with additional precision. Annotate objects with accurate width, depth, and height. Classify each pixel of an image. Mark individual points in an image. Annotate straight lines in an image. Measure, yaw, pitch, and roll of an item of interest. Annotate timestamps in video and audio content. Annotate freeform lines in an image.
    Starting Price: $25 per 1,000 annotations
  • 31
    Innodata

    Innodata

    Innodata

    We Make Data for the World's Most Valuable Companies Innodata solves your toughest data engineering challenges using artificial intelligence and human expertise. Innodata provides the services and solutions you need to harness digital data at scale and drive digital disruption in your industry. We securely and efficiently collect & label your most complex and sensitive data, delivering near-100% accurate ground truth for AI and ML models. Our easy-to-use API ingests your unstructured data (such as contracts and medical records) and generates normalized, schema-compliant structured XML for your downstream applications and analytics. We ensure that your mission-critical databases are accurate and always up-to-date.
  • 32
    UHRS (Universal Human Relevance System)
    When you need transcription, data validation, classification, sentiment analysis, or other related tasks, UHRS can give you what you need. We provide human intelligence to train machine learning models to help you solve some of your most challenging problems. We make it easy for judges to access UHRS anywhere, at any time. All that’s needed is an internet connection, and judges are good to go. Work on tasks like video annotation in just a few minutes. With UHRS, you can classify thousands of images quickly and easily. Train your products and tools with improved image detection, boundary recognition, and more with high quality annotated image data. Classify images, semantic segmentation, object detection. Validating audio to text, conversation, and relevance. Identify sentiment of a tweet, and document classification. Ad hoc data collection tasks, information correction/moderation, and survey.
  • 33
    Vertex Digital Twin Platform

    Vertex Digital Twin Platform

    Vertex Software LLC.

    Vertex improves and enhances your current workflows and tools. Plug our visualization engine directly into your existing interface, applications, and systems. Vertex is easy to use and low cost to deploy and maintain. Unlock 3D product data from any size model, to any number of users, on any device.
  • 34
    SuperAnnotate

    SuperAnnotate

    SuperAnnotate

    SuperAnnotate is the world's leading platform for building the highest quality training datasets for computer vision and NLP. With advanced tooling and QA, ML and automation features, data curation, robust SDK, offline access, and integrated annotation services, we enable machine learning teams to build incredibly accurate datasets and successful ML pipelines 3-5x faster. By bringing our annotation tool and professional annotators together we've built a unified annotation environment, optimized to provide integrated software and services experience that leads to higher quality data and more efficient data pipelines.
  • 35
    Jina Reranker
    Jina Reranker v2 is a state-of-the-art reranker designed for Agentic Retrieval-Augmented Generation (RAG) systems. It enhances search relevance and RAG accuracy by reordering search results based on deeper semantic understanding. It supports over 100 languages, enabling multilingual retrieval regardless of the query language. It is optimized for function-calling and code search, making it ideal for applications requiring precise function signatures and code snippet retrieval. Jina Reranker v2 also excels in ranking structured data, such as tables, by understanding the downstream intent to query structured databases like MySQL or MongoDB. With a 6x speedup over its predecessor, it offers ultra-fast inference, processing documents in milliseconds. The model is available via Jina's Reranker API and can be integrated into existing applications using platforms like Langchain and LlamaIndex.
  • 36
    Google Cloud Datalab
    An easy-to-use interactive tool for data exploration, analysis, visualization, and machine learning. Cloud Datalab is a powerful interactive tool created to explore, analyze, transform, and visualize data and build machine learning models on Google Cloud Platform. It runs on Compute Engine and connects to multiple cloud services easily so you can focus on your data science tasks. Cloud Datalab is built on Jupyter (formerly IPython), which boasts a thriving ecosystem of modules and a robust knowledge base. Cloud Datalab enables analysis of your data on BigQuery, AI Platform, Compute Engine, and Cloud Storage using Python, SQL, and JavaScript (for BigQuery user-defined functions). Whether you're analyzing megabytes or terabytes, Cloud Datalab has you covered. Query terabytes of data in BigQuery, run local analysis on sampled data, and run training jobs on terabytes of data in AI Platform seamlessly.
  • 37
    Tasq.ai

    Tasq.ai

    Tasq.ai

    Tasq.ai delivers a powerful, no-code platform for building hybrid AI workflows that combine state-of-the-art machine learning with global, decentralized human guidance, ensuring unmatched scalability, control, and precision. It enables teams to configure AI pipelines visually, breaking tasks into micro-workflows that layer automated inference and quality-assured human review. This decoupled orchestration supports diverse use cases across text, computer vision, audio, video, and structured data, with rapid deployment, adaptive sampling, and consensus-based validation built in. Key capabilities include global deployment of highly screened contributors (“Tasqers”) for unbiased, high-accuracy annotations; granular task routing and judgment aggregation to meet confidence thresholds; and seamless integration into ML ops pipelines via drag-and-drop customization.
  • 38
    Google Cloud Confidential VMs
    Google Cloud’s Confidential Computing delivers hardware-based Trusted Execution Environments to encrypt data in use, completing the encryption lifecycle alongside data at rest and in transit. It includes Confidential VMs (using AMD SEV, SEV-SNP, Intel TDX, and NVIDIA confidential GPUs), Confidential Space (enabling secure multi-party data sharing), Google Cloud Attestation, and split-trust encryption tooling. Confidential VMs support workloads in Compute Engine and are available across services such as Dataproc, Dataflow, GKE, and Vertex AI Workbench. It ensures runtime encryption of memory, isolation from host OS/hypervisor, and attestation features so customers gain proof that their workloads run in a secure enclave. Use cases range from confidential analytics and federated learning in healthcare and finance to generative-AI model hosting and collaborative supply-chain data sharing.
    Starting Price: $0.005479 per hour
  • 39
    Gemini Embedding
    Gemini Embedding’s first text model (gemini-embedding-001) is now generally available via the Gemini API and Vertex AI, having held a top spot on the Massive Text Embedding Benchmark Multilingual leaderboard since its experimental launch in March, thanks to superior performance across retrieval, classification, and other embedding tasks compared to both legacy Google and external proprietary models. Exceptionally versatile, it supports over 100 languages with a 2,048‑token input limit and employs the Matryoshka Representation Learning (MRL) technique to let developers choose output dimensions of 3072, 153,6, or 768 for optimal quality, performance, and storage efficiency. Developers can access it through the existing embed_content endpoint in the Gemini API, and while legacy experimental versions will be deprecated later in 2025, migration requires no re‑embedding of existing content.
    Starting Price: $0.15 per 1M input tokens
  • 40
    Vertex BD

    Vertex BD

    Argos Systems

    Vertex BD is a BIM software for medium to large sized residential builders. Architectural and structural drawing sets, fabrication drawings, material reports, manufacturing data, and marketing renderings are generated all from one building model. Vertex BD automates the process of generating lot specific drawing sets, saving production home builders countless hours of having to recreate drawings for each customer's choice of house options. Vertex BD is primarily used as panel prefab software by component manufacturers and panelizers to automate the process of generating wall and floor panel fabrication drawings, structural layouts, cut lists, and other material reports. By automating these processes, manufacturers are saving a considerable amount of design, drafting and estimation time while minimizing errors at the construction site. Available for wood and cold-formed steel construction.
    Starting Price: $380 per month
  • 41
    VertexOne
    For 30 years, VertexOne has been helping utilities and energy companies across North America achieve digital transformation and business process optimization. Our suite of solutions spans the meter-to-cash process and revolutionizes the customer and staff experience. Whether you're ready to implement effective customer engagement solutions, modernize your billing and customer information systems, or embrace the power of automation and data analytics, VertexOne has you covered. VertexOne products can be used as part of a comprehensive meter-to-cash platform or as standalone solutions in your technology stack. When it comes to the right information technology provider, experience is everything. With a vast portfolio of utility technology solutions, VertexOne offers the perfect options for utility and service providers of all sizes. We've been helping utilities and energy providers serve their communities for nearly three decades.
  • 42
    Databricks Data Intelligence Platform
    The Databricks Data Intelligence Platform allows your entire organization to use data and AI. It’s built on a lakehouse to provide an open, unified foundation for all data and governance, and is powered by a Data Intelligence Engine that understands the uniqueness of your data. The winners in every industry will be data and AI companies. From ETL to data warehousing to generative AI, Databricks helps you simplify and accelerate your data and AI goals. Databricks combines generative AI with the unification benefits of a lakehouse to power a Data Intelligence Engine that understands the unique semantics of your data. This allows the Databricks Platform to automatically optimize performance and manage infrastructure in ways unique to your business. The Data Intelligence Engine understands your organization’s language, so search and discovery of new data is as easy as asking a question like you would to a coworker.
  • 43
    HugeGraph

    HugeGraph

    HugeGraph

    HugeGraph is a fast-speed and highly-scalable graph database. Billions of vertices and edges can be easily stored into and queried from HugeGraph due to its excellent OLTP ability. As compliance to Apache TinkerPop 3 framework, various complicated graph queries can be accomplished through Gremlin (a powerful graph traversal language). Among its features, it provides compliance to Apache TinkerPop 3, supporting Gremlin. Schema Metadata Management, including VertexLabel, EdgeLabel, PropertyKey and IndexLabel. Multi-type Indexes, supporting exact query, range query and complex conditions combination query. Plug-in Backend Store Driver Framework, supporting RocksDB, Cassandra, ScyllaDB, HBase and MySQL now and easy to add other backend store driver if needed. Integration with Hadoop/Spark. HugeGraph relies on the TinkerPop framework, we refer to the storage structure of Titan and the schema definition of DataStax.
  • 44
    Google Cloud Analytics Hub
    Google Cloud's Analytics Hub is a data exchange platform that enables organizations to efficiently and securely share data assets across organizational boundaries, addressing challenges related to data reliability and cost. Built on the scalability and flexibility of BigQuery, it allows users to curate a library of internal and external assets, including unique datasets like Google Trends. Analytics Hub facilitates the publication, discovery, and subscription to data exchanges without the need to move data, streamlining the accessibility of data and analytics assets. It also provides privacy-safe, secure data sharing with governance, incorporating in-depth governance, encryption, and security features from BigQuery, Cloud IAM, and VPC Security Controls. By leveraging Analytics Hub, organizations can increase the return on investment of data initiatives by exchanging data. Analytics Hub is based on the scalability and flexibility of BigQuery.
  • 45
    Gemini 2.5 Flash
    Gemini 2.5 Flash is a powerful, low-latency AI model introduced by Google on Vertex AI, designed for high-volume applications where speed and cost-efficiency are key. It delivers optimized performance for use cases like customer service, virtual assistants, and real-time data processing. With its dynamic reasoning capabilities, Gemini 2.5 Flash automatically adjusts processing time based on query complexity, offering granular control over the balance between speed, accuracy, and cost. It is ideal for businesses needing scalable AI solutions that maintain quality and efficiency.
  • 46
    Vertex Protocol

    Vertex Protocol

    Vertex Protocol

    Vertex is a decentralized exchange that integrates spot trading, perpetual futures, and a money market into a single platform. It offers lightning-fast execution, low fees, and robust liquidity across multiple blockchain networks, including Arbitrum, Base, Mantle, and Sei. Users can trade spot assets, engage in leveraged perpetual contracts, deposit assets to earn yield and borrow against their holdings. The platform features a universal margin account, enhancing capital efficiency by allowing users to manage all positions and balances cohesively. Vertex's hybrid orderbook and automated market maker design provide deep liquidity and efficient trading experiences. The platform is non-custodial, ensuring users maintain control over their assets at all times. Additionally, Vertex offers a customizable trading interface, mobile compatibility, and advanced tools like one-click trading and real-time portfolio management.
  • 47
    Comet

    Comet

    Comet

    Manage and optimize models across the entire ML lifecycle, from experiment tracking to monitoring models in production. Achieve your goals faster with the platform built to meet the intense demands of enterprise teams deploying ML at scale. Supports your deployment strategy whether it’s private cloud, on-premise servers, or hybrid. Add two lines of code to your notebook or script and start tracking your experiments. Works wherever you run your code, with any machine learning library, and for any machine learning task. Easily compare experiments—code, hyperparameters, metrics, predictions, dependencies, system metrics, and more—to understand differences in model performance. Monitor your models during every step from training to production. Get alerts when something is amiss, and debug your models to address the issue. Increase productivity, collaboration, and visibility across all teams and stakeholders.
    Starting Price: $179 per user per month
  • 48
    Sixgill Sense
    Every step of the machine learning and computer vision workflow is made simple and fast within one no-code platform. Sense allows anyone to build and deploy AI IoT solutions to any cloud, the edge or on-premise. Learn how Sense provides simplicity, consistency and transparency to AI/ML teams with enough power and depth for ML engineers yet easy enough to use for subject matter experts. Sense Data Annotation optimizes the success of your machine learning models with the fastest, easiest way to label video and image data for high-quality training dataset creation. The Sense platform offers one-touch labeling integration for continuous machine learning at the edge for simplified management of all your AI solutions.
  • 49
    Agent Development Kit (ADK)
    The Agent Development Kit (ADK) is a flexible, open-source framework for building and deploying AI agents. It is tightly integrated with Google’s ecosystem, including Gemini models, and supports popular large language models (LLMs). ADK simplifies the development of both simple and complex AI agents, providing a structured environment for building dynamic workflows and multi-agent systems. With built-in tools for orchestration, deployment, and evaluation, ADK helps developers create scalable, modular AI solutions that can be easily deployed on platforms like Vertex AI or Cloud Run.
  • 50
    Vertex Case Records Manager
    Vertex Case Manager is a cloud-based electronic case management software solution. Vertex Case Manager was created specifically designed for agencies like yours that serve people with disabilities in the community, employment, and residential settings. The Vertex Case Manager gathers information from every step of your client’s tenure from enrollment thru discharge. Through our social work case management software, information is gathered as clients attend and advance through your programs. Users can enter service time and progress records throughout the day. Missing or incomplete documents trigger a reminder to service providers to help maintain compliance. Our case management system allows for your user experience to be stress-free and keeps your agency organized and documentation compliant. From the dashboard, users see notifications, mark arrival times, and edit records all in one location.
    Starting Price: $2500 one-time payment