Claude
Claude is a next-generation AI assistant developed by Anthropic to help individuals and teams solve complex problems with safety, accuracy, and reliability at its core. It is designed to support a wide range of tasks, including writing, editing, coding, data analysis, and research. Claude allows users to create and iterate on documents, websites, graphics, and code directly within chat using collaborative tools like Artifacts. The platform supports file uploads, image analysis, and data visualization to enhance productivity and understanding. Claude is available across web, iOS, and Android, making it accessible wherever work happens. With built-in web search and extended reasoning capabilities, Claude helps users find information and think through challenging problems more effectively. Anthropic emphasizes security, privacy, and responsible AI development to ensure Claude can be trusted in professional and personal workflows.
Learn more
Vertex AI
Build, deploy, and scale machine learning (ML) models faster, with fully managed ML tools for any use case.
Through Vertex AI Workbench, Vertex AI is natively integrated with BigQuery, Dataproc, and Spark. You can use BigQuery ML to create and execute machine learning models in BigQuery using standard SQL queries on existing business intelligence tools and spreadsheets, or you can export datasets from BigQuery directly into Vertex AI Workbench and run your models from there. Use Vertex Data Labeling to generate highly accurate labels for your data collection.
Vertex AI Agent Builder enables developers to create and deploy enterprise-grade generative AI applications. It offers both no-code and code-first approaches, allowing users to build AI agents using natural language instructions or by leveraging frameworks like LangChain and LlamaIndex.
Learn more
EmbeddingGemma
EmbeddingGemma is a 308-million-parameter multilingual text embedding model, lightweight yet powerful, optimized to run entirely on everyday devices such as phones, laptops, and tablets, enabling fast, offline embedding generation that protects user privacy. Built on the Gemma 3 architecture, it supports over 100 languages, processes up to 2,000 input tokens, and leverages Matryoshka Representation Learning (MRL) to offer flexible embedding dimensions (768, 512, 256, or 128) for tailored speed, storage, and precision. Its GPU-and EdgeTPU-accelerated inference delivers embeddings in milliseconds, under 15 ms for 256 tokens on EdgeTPU, while quantization-aware training keeps memory usage under 200 MB without compromising quality. This makes it ideal for real-time, on-device tasks such as semantic search, retrieval-augmented generation (RAG), classification, clustering, and similarity detection, whether for personal file search, mobile chatbots, or custom domain use.
Learn more